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Abstract. Satellite ocean color has been providing a monitoring capability for   bio-optical properties along the coastal line using several ocean color sensors for a number of years.  Applications of these data for coastal managers and researchers are limited by coverage and the ability to “forecast” the changing conditions.  We examine the capability to couple satellite bio-optical properties with physical forecast circulation models to provide a “real-time” prediction of 24 hour bio-optical distribution along coastal regions.  A real-time and long term evaluation of the optical forecast is assessed by comparison with the next day imagery. The forecast is based on eulerian advection which does not account for biological and optical degradation and growth processes. However, for near real-time (~ 24 hours) coastal applications, this assumption appears valid and provides a new capability for planning and coastal management.  

1.
Introduction

Algorithms for ocean color bio-optical properties from space have advanced  significantly in the last 20 years. Improved alogorithms have advanced beyond chlorophyll to characterize coastal optical properties such as absorption from phytoplankton, colored dissolved organic matter and detritus, in addition to backscattering from the partical distribution. These properties have provided new insights into the changing conditions along our coast. However, for many coastal management applications these satellite derived properties are insufficient to make real-time decisons (Arnone and Parsons, 2004). Daily satellite ocean color imagery represents a nowcast of bio-optical conditions. Although these near real-time bio-optical products can be made available within hours of a satellite over pass, they may be inadequate for operations. In the coastal waters, changes are occuring within hours as a results of the tidal fluxuations, river discharges, precipation, and local wind events so that the nowcast of the bio-optical properties may not be representative of local conditions within the 24 hour period. Real-time coastal decisons such as: 1) the dissipation of the coastal plume 2) movement of a Harmful Algal Bloom 3) River plume dispersion 4) Turbidity frontal movement 5) chlorophyll bloom dispersion and 6) larval fish migration,  all may require hourly forecast of the bio-optical properties on a daily basis. 

The forecast of bio-optical properties along coastal waters requires an initialization field. This field can be best represented by the nowcast from ocean color bio-optical properties. Forecast and prediction of these properties can be defined by coupling these properties with a forecast circulation model. Circulation models have advanced significantly in the last 10 years and are approaching the confidence of weather forecasting. Circulation models are driven by winds and boundary conditions and are data assimilative of sea surface temperatures and sea surface height.
  A major forcing in coastal enviroments is the result of the physical processes such as tides and winds and river discharge (Arnone et al, 2007). These physical processes change on scales of hours and results in advection of water masses. Although bio-optical processes are different than physical processes, we argue that bio-optical time scales occur on  longer (on order of several days) compared to hourly time scales of the physical forcing. The coupling of the bio-optical properties with the physical circulation models should provide a capability to forecast the bio-optical properties on short times scales (days) where as at longer times scales (several days to weeks) the bio-optical processes may be decoupled from physical processes. For these longer time scale forecasting, other more complex bio-optical models may be required (Jolliff et al., 2008).  


Satellite ocean color products are available from several satellites such that daily imagery is available along most coastlines. The initialization field of the coastal environment can be reinitialized daily using updated satellite bio-optical products such that a 24 hour forecast should be possible for coastal decisons.  

Our objective is to demonstrate the ability to derive bio-optical products along coastal waters on short time scales based on coupling ocean color bio-optical products with forecast ocean circulation models. We evaluate the bio-optical forecast using satellite imagery to determine an effective forecast probability. 

2. Satellite Ocean Color and Circulation Models 

Ocean color imagery from MODIS-Aqua was used to determine the bio-optical properties along the coast of northern Gulf of Mexico at the Mississippi River delta, USA for a month period in October, 2009.  The Quasi Analytical Algorithm (QAA) (Lee et al., 2003, Martinolich, 2006) was used to process the imagery into backscattering (@551) and absorption (@443) and chlorophyll products.  We used the 1 km products in our example, although new algorithms have been developed to determine these properties at 250 m (Ladner et al, 2007) which show improved capability for coastal management requiring the high resolution. The backscattering coefficient has been used to estimate an effective particle concentration, if we assume a specific size and composition and this property can be treated as a water mass tracer only affected by particle settling.  The total absorption properties are influenced by phytoplankton, detritus and colored dissolved organic matter. The absorption properties are less of a conservative tracer since they are influenced by biological processes such as growth, decay photo-oxidation, etc. However, on these short time scales, we argue they also are minimal.   

Examples of the chlorophyll and backscattering at 551nm are shown in Figure 1a, b for Oct 19, 2009.  
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Fig. 1. MODIS derived coastal bio-optical properties of a) chlorophyll and b) backscattering 551 from QAA for Oct 19, 2009 along the Mississippi Delta USA. The clouds in the lower image are gray. 

The Navy Coastal Ocean Model (NCOM) was used to define the forecast circulation of the region.  NCOM is a 41 layer model currently used for Navy operations. The model is forced with COAMPS winds and obtains boundary conditions from the “Global NCOM”. This model assimilates both sea surface height fields from satellite altimeters and sea surface temperature from AVHRR (Martin, 2000).   The model is run daily and reinitialized with updated winds fields and updated Sea Surface Height fields from satellite altimeters and sea surface temperature. NCOM includes river discharge from 40 rivers entering the Gulf of Mexico. The nowcast and forecast out to 48 hours is available from NCOM on a 3 hour basis. 
Regional NCOM for the Intra-Americas Sea is the relocatable version of the Navy Coastal Ocean Model.   The horizontal current field (u, v) is required as an input to the bio-optical forecast. The expected format for these data files is NetCDF with one time step per file and u and v in separate files.  The modeled current field for each time step is required to perform the advection.  If model fields are provided at a lower temporal resolution than the forecast, then   interpolation will be performed between each model time step to produce desired time steps. In this example, NCOM is at a resolution of 4 km and interpolated to 1km to match the satellite grid. NCOM has been shown to accurately represent the tides and circulation along the coast and will not be described in detail here (Ko et al., 2003). 
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Fig. 2. NCOM surface currents (a) and   (b) surface current overlaid on the bio-optical properties field for Oct 19, 2009. Contours are sea surface height from NCOM.   Note the currents are interpolated to the resolution of the imagery. 
2.1. Bio-optical Initialization Field: “Nowcast”.


The initialization bio-optical field is a critical step in the forecast.  A bio-optical forecast requires complete spatial coverage in the initialization daily field. This is required for several reasons: 1) prevent gaps or no data (ND) from creating artificial local boundary conditions in the advective forecast and 2) Methods are required to prevent artificial bio- optical boundaries between ND and known data. The initialization field is constructed daily using all known data and previous forecast field to provide a realistic bio-optical forecast. A realistic initialization field prevents abrupt data recreation and boundaries from artistically propagating into the forecast. 

 As is observed in Figure 1, a major limitation of the ocean color imagery is that complete coverage of the bio-optical properties is not available daily. There are many times when limited coverage results from 1) cloud cover 2) algorithms failure (atmospheric, high turbidity, saturated radiance etc) or  3) no satellite coverage. These limitations require a procedure to “fill in the gaps”.  The initialization field is based on a series of additive steps to establish the “most recent” bio-optical coverage for a coastal area which is used to establish the forecast. The additive pixel procedure is used to determine the complete spatial distribution of the coastal bio-optical property. The hierarchy and details of the procedure are discussed in details in Casey and Arnone, 2007. The “gap filler” procedure are summarized is steps 1- 4:
1) Today’s bio-optical properties   ( best and most accurate 

2) Spatially convolve the bio-optical data of step 1 out several pixels Fills small holes / speckle etc. 
3) Triangular interpolation of data gaps in step 2 to fill in data gaps. 
4) Yesterday’s, 24 hour bio-optical forecast 
As listed in these steps, if the first image does not have complete spatial coverage, then as daily bio-optical observations are added, the coastal coverage improves and the initialization field improves. Depending on the area and cloud coverage, the bio-optical coverage takes about 1 to 2 weeks before a coherent bio-optical field initialization and forecast field can be established. Additionally, as increased satellite bio-optical data enters the initialization process, the bio-optical forecast improves, and it is then used in the next day’s initialization field. This forecast “spin-up” time has been used in a variety of “cloudy” coastal regions with partial ocean coverage. A similar procedure to generate the initialization field is used in weather forecasting. The procedure has the advantage that for each day the “best” and most recent data enters the forecast. As you can imagine, however, the entire bio-optical properties along a coast line can change from one day to the next, for example, if a “cloud free” scene enters the initialization field when the previous days initialization was based only on a forecast.  Because the initialization is performed daily, reinitialization to observations conditions is rapid and the forecast improves.  An example of the initialization field of chlorophyll and backscattering are shown in figure 3 .
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Fig. 3. Initialization field for Oct 19, 2009 a) chlorophyll a and b) backscattering b.  Notice the removal of the clouds using the steps outlined in the text.  
3. Forecasting using Eulerian advection 

The forecasting of bio-optical properties is performed by applying a simple advection approach to satellite derived bio-optical products using the NCOM forecast circulation model in order to forecast the surface optical properties. As was described earlier, the theoretical basis for this, assumes bio-optical properties are controlled solely by the physical circulation within a 24 hour cycle. The bio-optical processes such as phytoplankton growth and decay and CDOM production and oxidation are not considered and are remissive.  Previous efforts have used a Lagrangian advection approach; however, this process was shown to produce significant errors along coastal boundaries in addition to the high computing requirements. For these reasons we switched to an eulerian approach (Arnone et al, 2006). 
The NCOM model and the satellite derived bio-optical initialization field pixel grid are established based on the grid resolution of the image (in this case 1km). The vertical fluxes into and out of the grid cells of the bio-optical properties are estimated from the horizontal fields.  We apply a "thin-layer approximation" to extend surface 2D advection to 3 dimensions.  The advection is performed on a surface layer, for convenience, at 1 meter thickness, which goes up and down with free sea surface such that the vertical velocity is 0 at the surface.  The vertical velocity at the base of the layer can be determined from divergence/convergence of horizontal currents following the volume conservation.  The vertical flux is estimated assuming a uniform concentration of field at vertical.    Forward time stepping with first-order upwind advection is applied to the vertical advection.  For the horizontal advection of the satellite field, a third-order upwind advection scheme with flow adjustment is applied to reduce diffusion and to prevent "overshooting" out of the ocean.

So for example, as the surface layer bio-optical properties move offshore and  diverge from coastal boundaries, the vertical flux  replenishes the bio-optical concentration from a vertical upwelling (flux) of the subsurface bio-optical property.  Similarly, the vertical flux of bio-optical concentration can account for downwelling flux into the subsurface layers. However, these processes are not associated with bio-optical processes but are simply a conservative tracer of the physical flux of the bio-optical concentration.   
The initialization field of backscattering @ 551nm for Oct 19, 2009, was advected on an hourly basis and the surface bio-optical forecast is shown in Figure 4 a - j. This sequence represents the forecast of the surface bio-optical properties for every 3 hours out to 24 hours; i.e. next day.  The initial field is created for approximately 11AM local at the time of MODIS –Aqua overpass and forecast out to 11 am the next day. 
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[image: image7]Fig. 4.   Forecast of the surface backscattering coefficient for Oct 19, 2009, at 3 hour intervals for 24 hours.  Time of the MODIS overpass was ~ 1200 local. (a) , 1200 local (b), 1500 local (c),1800 local (d), 2100 local next day  (e), 2400 local (f), 0300 local (g), 0600 local  (h), 0900 local and (i) 1200 PM 24 hour forecast 
4.
Validation of the bio-optical forecast:    

The validation and an estimate of the uncertainty of the bio-optical forecast can be quickly assessed by pixel-by-pixel comparison of  24 hours forecast with the  next day satellite bio-optical product. This is assuming that the next day bio-optical property can be retrieved (i.e. cloud free). Satellite retrieved bio-optical properties are assumed valid. We assess the forecast accuracy based on a match up with these values.  A difference comparison is computed at locations only where satellite retrieved properties occur. (We do not use “gap filled” derived bio-optical properties that were described earlier in the validation procedure.)  The difference between the backscattering forecast and next day’s image (fig.5c) indicates both over-estimating and under-estimating of the backscattering coefficient. We call this difference the “forecast error”.  In this example, we notice that the MS river plume was forecast to be advected to the west more so than what was observed in the next day’s image. The difference image shows higher backscattering (red) than observed to the west of the river plume. 
As is shown, the satellite images of the bio-optical properties provide an input into both the “nowcast” or initialization field and the validation field.  Notice that the forecast error, (i.e. over or under estimated values) are spatially distributed and that certain regions have greater differences than others. These differences, however, are for an individual day’s forecast and evaluation of a forecast is typically based on the forecast performance over a longer time sequence.  As in weather forecasting, a statistical approach to forecasting is used for an evaluation.
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[image: image9] Fig. 5. Comparisons and validation of forecast backscattering@ 551 for Oct 20, 2009.  a. 24 hour Forecast  b. MODIS Oct 20, 2009 image including the clouds and atmospheric failures. c. Difference between MODIS and forecast (a and b) for valid retrievals only. White areas are zero difference, red areas are over r and blue areas are underestimated values. The black areas are clouds. 
The validation procedure described for computing the “forecast error” which includes: a) developing a daily initialization field, b) 24 hour forecast of the backscattering coefficient and c) the comparison with the next day’s image, was run for a 31 day sequence from Oct 1 through Oct 31, 2009.  As expected, the daily forecast error was spatially changing. Certain regions showed more skill in bio-optical forecast than others. To assess this regional forecast skill, we determined the mean error of the difference field for the backscattering coefficient between the forecast and the next day’s image. The mean error field in this monthly period identifies the locations of higher and lower uncertainty of the forecast (Fig. 6 a). Note the overestimates (red) in the location of the MS river plume.  There are regions where both overestimating and underestimating of the forecast error occurs on a monthly basis. However these errors are not clearly represented simply by the monthly mean difference (i.e. positive and negative means can results in zero mean (white area). To address these forecast errors, the standard deviation of the difference field is shown in Fig 6b. The standard deviation of this field illustrates the error about the mean and is perhaps a better way to represent forecast error. For example, along dynamic frontal locations where both an over and under estimate of the backscattering occur during the month in response to the errors in frontal movements, there will be a high standard deviation compared to the low mean error.  Significant standard deviation error (high red colors) are observed in coastal areas associated with strong tidal regimes and the dissipation of the Mississippi River plume.  
However, the total number of points used to determine the mean and standard deviation is critical to determine statistical validity. The number of matchup’s pairs used to compute the mean and standard deviation for the month is represented in fig 6c at each location. This number represents the number of times during the month that a difference between the forecast field and a satellite retrieved backscattering product was computed. The greater number of matchup pairs (white >10+) represents valid statistical relationships, compared to the low numbers such as 4 and 5 (blues).  
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[image: image12.png]Figure 6:  The backscattering forecast error for month of Oct, 2009 (~30 day). a) The mean error of the difference field between the forecast and satellite observations. White areas have no difference, red represents over and blue underestimated error.  b) The standard deviation of the difference errors. c) The number of match up pairs where the differences were                                                                                                                                                       computed (1- 10+ days) in the month.    

Notice that in areas where there are high number of data pairs (white in fig.6c), the monthly mean forecast errors are low (white areas in fig. 6a) especially in the western region. The Mississippi Plume statistics are mixed. Representative errors occur where are high numbers (white in Figure 6c) in addition to a high mean error (red or blue) (fig. 6a).  In the areas where there are lower number of match ups (such as 3 or 4 values represented as blues in Fig6c) and the forecast error is high (red) the forecast errors are not representative.  At these locations were the numbers are low, the statistical forecast error is unreliable. 
In order to determine how the forecast of the backscattering compares with monthly “climatology”, we examined the monthly mean and standard deviation of the backscattering coefficient for Oct 2009 (Figure 7 a, b) which was computed based only on satellite derived backscattering.   As expected, the mean backscattering distributions do not show the small scale plumes and eddies along the coast as observed in Oct 19, and in the optical forecast. The monthly mean distribution is much different from the individual day’s imagery and the forecast.  The monthly standard deviation of backscattering (Fig 7b) represents substantial changes in coastal backscattering which we believe is primarily resulting from the monthly variability in the physical processes and secondarily to the monthly bio-optical processes.  Notice that regions with the highest standard deviation of backscattering (Fig 7b) are locations associated with physical forcing in strong tidal regimes and coastal plumes.    
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Figure 7: Monthly Oct 2009 backscattering @551coefficient derived from MODIS –Aqua a) Monthly mean and b) standard deviation from the mean.   
 The monthly backscattering forecast was evaluated against the initialization bio-optical field to determine the “forecast change” within a 24 hour period.  This statistic determined how the 24 hour forecast compares to the initialization field, or how backscattering changed from initialization. The forecast change was computed as the difference  of only the satellite derived backscattering used in the initialization and  the backscattering forecast. This daily forecast change was than averaged for a 30 day period to determine the mean and standard deviation of the change (Figure 8a,b). 
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 INCLUDEPICTURE "http://www7333.nrlssc.navy.mil/outgoing/opcast_paper/figure_8b.png" \* MERGEFORMATINET [image: image16.png]Figure 8. A monthly statistics of backscattering “forecast change” for Oct 2009  which is computed as the difference between the initialization and the forecast backscattering @551. a) monthly mean and b) monthly standard deviation. 

The number of match up pairs used to determine the forecast change is dependent on the daily satellite backscattering.  In our advection example, this statistic recognizes the variability resulting from the influence only of the circulation on the backscattering coefficient, since bio-optical processes were not included. Here, we propagated the backscattering coefficient forward in time and determined how much it changed.   As expected the largest changes (red) occur around the  location of the Mississippi River plume where the largest currents were observed in the 24 hour period. This example than shows the locations where strongest influence of surface currents  occur and these areas appear similar to the greatest forecast error (Figure 6a).   
We define the 24 hour “persistence error” of the backscattering product as the difference within a 24 hour change in backscattering. High changes indicate high persistence error, or lack of persistence. A lower error suggests that small changes occur and a similar backscattering coefficient can be used from one day to the next to represent the forecast. The persistence error is computed by differencing locations using two sequential (within 24 hours) satellite backscattering fields. The difference is computed daily and than averaged over the month. The persistence error represents change resulting from both physical and bio-optical processes since it is based only on observed satellite retrievals of backscattering products and not on the physical circulation model.  We computed this monthly persistence error field for Oct 2009, as the mean and standard deviation (figure 9 a and b). 
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Figure 9.  The backscattering coefficient “persistence error” was computed as difference between two satellite backscattering retrievals within a 24 hour period and statistics assembled for Oct 2009. a) monthly mean (black areas indicate no pair of 24 difference were observed  b) monthly standard deviation and c) number on observations pairs used to generate the monthly mean (Black is no data). 
To evaluate the representativeness of the monthly “persistence errors” of the mean and standard deviation, the number of match up samples (or satellite observed pairs) for each grid point is shown in Figure 9c. This is the number of data points used to compute the mean and require two satellite products within 24 hours.  The large amount of black, red and pick (0,1,2)  areas in Fig 9c, indicate that there were few samples to compute the mean for the 31 day period and the mean and standard deviation persistence errors not representative. Therefore, the low persistence error observed (Fig 9(a) is misleading since there were very few points. A longer time period or more sequential observations is required to define the daily “persistence error”; although these statistics are difficult to obtain.   
4.1. Persistence and forecast error: 

The comparison between the persistence (fig 9)  and forecast (fig.6) errors suggests persistence is between than forecast.  However, several issues should be considered in these results.  The number of samples used to compute persistence error (Fig 9c) is small compared to those used for forecast error (Fig 6c) because the calculation of the persistence error is dependent on cloud free “observation” from two sequential days, whereas forecast error is dependent on cloud free “observation”  in one image. Although the persistence error has a lower mean and lower standard deviation than the forecast error, the small sample size in the persistence errors is not statistically valid and requires more data points.  

Additionally, the forecast error was computed based on the initialization field which can include gap filled observations that were based on a previous forecast. For multiple cloudy or no observation days, the initialization field and the forecast would be based on old data that is greater than 24 hours. This essentially assumes an older than 24 hour observation used in the initialization field and the forecast error represents the error in many cases much greater than 24 hours. Therefore, the forecast errors would be based on the age of the initialization field. This accounts for the higher error for the 24 hour forecast (figure 6a).  The advantage using the forecast error is that this statistics error is computed based on a much larger region and has more number compared to the persistence error.   
 5. Uncertainty in the Forecast: 
We argued that for short time scales, the physical processes are responsible for controlling the distribution of surface bio-optical properties. Based on this, can we assess the uncertainty in the bio-optical forecast and determine where the error can occur? 

The first and perhaps largest uncertainty is from the physical circulation model. Although this model has been shown to represent the surface ocean conditions accurately, there is some temporal and spatial uncertainty of these processes which we did not represent. As discussed previously, the forecast physical models have several methods to assess their uncertainty which were not addressed here. A physical model can be set up to run with different initialization conditions which consider 1) grid resolution of the wind forcing fields 2) grid resolution of the bathymetry 3) model grid spacing 4) vertical layer spacing 5) boundary conditions etc. The physical model can run a set of ensemble (typically ~40) to determine the uncertainty in the currents forecast field (Rixen et al., 2009).  Using the current uncertainty, we can estimate the optical forecast for each of the ensemble currents and define the mean and spread of the optical forecast.  We did not do this in these examples and assume the model currents were valid and correct. This is one source of optical forecast uncertainty that was not taken into account.
Satellite retrievals of the bio-optical properties (backscattering coefficient or chlorophyll) have an uncertainty based on the uncertainty of the algorithms. We implemented a set of uniform optical relationships that are used in the QAA algorithms which are considered standard. However, these relationships can change with location and bio-optical processes.  The QAA algorithms has been shown to have some degree of uncertainty, (Lee et al., 2009) however these relationships should work well in the Gulf of Mexico. The uncertainty from these algorithms can influence the initialization and forecast. We assume the uncertainty of the algorithms is similar from one day’s satellite image to another.  Lastly, satellite retrievals require processing for atmospheric correction in addition to the in-water algorithms. The uncertainty in the aerosol models used for atmospheric correction is spatially and temporally changing, especially in coastal areas where aerosol optical depths are variable. We did not include this source of uncertainty of the atmospheric correction in the MODIS backscattering retrievals that were used in the forecast.   
 4.
Conclusion: 

The retrievals of bio-optical properties from ocean color satellite have made significant advances in defining a “nowcast” of coastal conditions. New capability is required for coastal operations, coastal managers and researchers to forecast these properties on time scales of hours to weeks. The coastal environment changes on scales of hours, mostly as a result of the physical forcing associated with tidal, discharge and currents. We coupled daily surface ocean color properties of the backscattering coefficient at 551nm and chlorophyll concentration to a physical circulation model and advected the field to determine an hourly forecast of the satellite derived properties. 


The forecast of bio-optical properties is reinitialized daily as new satellite observations properties enter the forecast. The methods to construct a gap filled initialization field and integrate it into a coastal bio-optical forecast system required approximately one to two weeks spin-up time, and is based on availability of cloud free observations. We illustrate a one month daily forecast of the surface particle backscattering properties for   October 2009. 

A daily 24 hour forecast of the backscattering coefficient was evaluated based on comparison with the “next day’s” derived product. We conducted the validation and uncertainty of daily bio-optical forecast for a one month period to estimate spatial statistical relationships of the forecast uncertainty. The Oct 2009 statistics (mean and standard deviation) of the backscattering coefficient forecast were characterized by the “forecast error”, “forecast change,” and “persistence error”.    

The forecast error showed higher errors in locations where there are strong currents and significant changes in the dynamics. We attributed these to uncertainty in the physical processes of the model forecast. The statistics of the persistence error (daily changes in satellite bio-optical properties), although appearing low, are not representative of the changing bio-optical conditions since the numbers of satellite observations used to generate the persistence statistics is not representative.   
Coastal managers and researchers require new methods similar to weather forecasting to assess the coastal ecological conditions on time scale of hours. We demonstrated a new capability for using ocean color remote sensing to provide both the initialization and validation for bio-optical forecasting. On short time scales the physical processes are shown to be representative of the distributions of bio-optical properties. Future capabilities in ecological forecasting will rely on some degree of physical forcing in addition to bio-optical processes. We have shown an initial capability for coastal optical forecasting. However, improved methods to characterize the forecast uncertainty which are used in weather forecasting can be applied to bio-optical forecasting in the immediate future.   
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