
Avh_Angles(3) aps_avhrr API Reference Avh_Angles(3)

NAME
Avh_Angles − determines the zenith and azimuthal angles for the avhrr sensor

SYNOPSIS
void Avh_Angles (int npix, double zlat, double zlon, double *theta, double *phi, double *scanp);

ARGUMENTS
npix center pixel

zlat latitude of interest

zlon longitude of interest

theta zenith angle

phi amizmuth angle

scanp scan view angle

DESCRIPTION
Given a pixel location, returns the zenith and azimuthal angles

6 September 2004 Avh_Angles 1



Avh_Close(3) aps_avhrr API Reference Avh_Close(3)

NAME
Avh_Close − close AVHRR data stream

SYNOPSIS
void Avh_Close (AVHRR *avh);

ARGUMENTS
avh AVHRR stream pointer

DESCRIPTION
Avh_Close causes the AVHRR data stream pointed to by avh to be closed. No further reading can be done
to the stream. All memory associated with the stream pointer are free and the stream pointer is set to null.

6 September 2004 Avh_Close 1



Avh_GetEndTime(3) aps_avhrr API Reference Avh_GetEndTime(3)

NAME
Avh_GetEndTime − get ending time from AVHRR data stream

SYNOPSIS
int Avh_GetEndTime (AVHRR *avh, int *year, int *day, int *msec);

ARGUMENTS
avh AVHRR stream pointer

year end of data set year (e.g. 1999)

day end of data set day of year (e.g. 324)

msec end of data set time of day

DESCRIPTION
Avh_GetEndTime returns the start time as read from the AVHRR data stream header. Avh_Open must be
called to open the AVHRR data stream.

The year is returned as a 4-digit year. The day is returned as a 3-digit day of year and time is retuned as the
UTC milliseconds of the day.

For NESDIS Level-1b and NESDIS KLM Level-1b files, the time is extracted from the data set header
record.

For NESDIS Level-0, this information can not be easily obtained, since there is no header record. There-
fore, each parameter is set to -1 and AVH_ERROR is returned.

RETURNS
AVH_OK if successful, or AVH_ERROR if information is unavailable

6 September 2004 Avh_GetEndTime 1



Avh_GetInfo(3) aps_avhrr API Reference Avh_GetInfo(3)

NAME
Avh_GetInfo − get information about the AVHRR data stream

SYNOPSIS
int Avh_GetInfo (AVHRR *avh, int *satID, char *satIDchar, char *satName, int *DataTypeCode, int
*tipsrc, int *numSamps, int *CntDataRecords, int *CntDataGaps, int *numChannels, int *channels, int
*is8bit);

ARGUMENTS
avh AVHRR stream pointer

satID satellite ID Number

satIDchar two-character satellite ID

satName seven-character satelite name

DataTypeCode
data code

tipsrc TIP source

numSamps number of samples across scan-line

CntDataRecords
number of scan-lines in file

CntDataGaps number of missing lines in file

numChannels number of channels in file

channels array of 1/0’s if channel is present

is8bit 1, if video is 8-bit, 0, if not

DESCRIPTION
Avh_GetInfo is used to extract header information from the AVHRR data stream. It is must be called after
Avh_Open.

The satID, satIDchar, satName will be returned as follows

(SAT_UNKNOWN,"NA","unknown")
(SAT_TIROS,"TN","tiros-n")
(SAT_NOAA_6,"NA","noaa-06")
(SAT_NOAA_7,"NC","noaa-07")
(SAT_NOAA_8,"NE","noaa-08")
(SAT_NOAA_9,"NF","noaa-09")
(SAT_NOAA_10,"NG","noaa-10")
(SAT_NOAA_11,"NH","noaa-11")
(SAT_NOAA_12,"ND","noaa-12")
(SAT_NOAA_14,"NJ","noaa-14")
(SAT_NOAA_15,"NK","noaa-15")
(SAT_NOAA_16,"NL","noaa-16")
(SAT_NOAA_17,"NM","noaa-17")

The dataType will be returned as one of AVH_LAC, AVH_GAC, AVH_HRPT.

The numSamps will contain the number of samples across a scan line.

The CntDataRecords will contain the total number of scan lines in the data stream. Note that this informa-
tion is not always accurate.

The CntDataGaps will contain the total number of "missing" scan lines. The AVHRR data stream does not

6 September 2004 Avh_GetInfo 1



Avh_GetInfo(3) aps_avhrr API Reference Avh_GetInfo(3)

embed these missing scan lines, so the user must examine the scanLineNumber or use the scanLineTime to
determine if a line is actually missing. See Avh_GetLineInfo.

The numChannels will contain the number of channels in the data stream.

The channels array (user should allocate at least 5 elements for this array) is a series of flags indicating
whether the channel (as indicated by the index) is present (set to 1) or not (set to 0). That is, if chan-
nels[1] = 1, then channel 2 is present.

The is8Bit flag will contain a 1 if the video data is 8-bit. Otherwise, the video contains the full 10-bits of
AVHRR resolution.

RETURNS
AVH_OK, if successful; AVH_ERROR, otherwise.

6 September 2004 Avh_GetInfo 2



Avh_GetLineInfo(3) aps_avhrr API Reference Avh_GetLineInfo(3)

NAME
Avh_GetLineInfo − get information for current AVHRR data record

SYNOPSIS
int Avh_GetLineInfo (AVHRR *avh, int *scanLine, int *numLatLons, int *isAscend);

ARGUMENTS
avh AVHRR stream pointer

scanLine scan line number

numLatLons number of navigation pairs in line

isAscend ascending (1) or descending (0)

DESCRIPTION
The scanLine number is a relative number. The first record in the data file may or may not start with one.
But, it will increment sequentially unless there is a data gap.

The number of navigation pairs in line will normally return 51.

isAscend will return a 1 if the scanline relative to the previous record is ascending or Northbound and a 0 if
the scan line is descending or Southbound.

If the file is a Level-0 file, all the parameters are set to -1 and AVH_ERROR is returned since this format
has no navigation information.

RETURNS
AVH_OK, if successful; AVH_ERROR, otherwise.

6 September 2004 Avh_GetLineInfo 1



Avh_GetLonLat(3) aps_avhrr API Reference Avh_GetLonLat(3)

NAME
Avh_GetLonLat − get longitude/latitude pairs for current AVHRR data record

SYNOPSIS
int Avh_GetLonLat (AVHRR *avh, int *nout, double *ouLon, double *ouLat);

ARGUMENTS
avh AVHRR stream pointer

nout number of scan lines extracted

ouLon longitudes

ouLat latitudes

DESCRIPTION
Avh_GetLonLat will return up to nll latitudes and longitudes for the given scan line. The latitudes range
from -90 (South) to 90 (North) and the longitudes range from -180 (International Date Line) through 0
(Prime Meridian, Greenwhich England) to 180.0 (International Date Line). There a maximum of 51 earth
location points, so the user must allocate at least this many doubles for both arrays. If the input file does
not contain earth location information then AVH_ERROR is returned.

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetLonLat 1



Avh_GetLonLatAt(3) aps_avhrr API Reference Avh_GetLonLatAt(3)

NAME
Avh_GetLonLatAt − get longitude/latitude pairs for current AVHRR data record

SYNOPSIS
int Avh_GetLonLatAt (AVHRR *avh, int nout, int *samps, double *ouLon, double *ouLat);

ARGUMENTS
avh AVHRR stream pointer

nout number of samples

samps sample locations

ouLon longitudes

ouLat latitudes

DESCRIPTION
Avh_GetLonLatAt will return up to nll latitudes and longitudes for the given scan line at the given sample
locations. The latitudes range from -90 (South) to 90 (North) and the longitudes range from -180 (Interna-
tional Date Line) through 0 (Prime Meridian, Greenwhich England) to 180.0 (International Date Line).

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetLonLatAt 1



Avh_GetSatID(3) aps_avhrr API Reference Avh_GetSatID(3)

NAME
Avh_GetSatID − get satellite ID about the AVHRR data stream

SYNOPSIS
int Avh_GetSatID (AVHRR *avh);

ARGUMENTS
avh AVHRR stream pointer

DESCRIPTION
Avh_GetSatID will return one of SAT_UNKNOWN, SAT_TIROS, SAT_NOAA_6, SAT_NOAA_7,
SAT_NOAA_8, SAT_NOAA_9, SAT_NOAA_10, SAT_NOAA_11, SAT_NOAA_12, SAT_NOAA_14,
SAT_NOAA_15, SAT_NOAA_16, SAT_NOAA_17.

RETURNS
AVH_OK, if successful; AVH_ERROR, otherwise.

6 September 2004 Avh_GetSatID 1



Avh_GetSolarZenithAngles(3) aps_avhrr API Reference Avh_GetSolarZenithAngles(3)

NAME
Avh_GetSolarZenithAngles − get solar zenith angles for current AVHRR data record

SYNOPSIS
int Avh_GetSolarZenithAngles (AVHRR *avh, int *nsza, double *sza);

ARGUMENTS
avh AVHRR stream pointer

nsza number of solar zenith angles

sza solar zenith angles

DESCRIPTION
Avh_GetSolarZenithAngles returns the number of solar zenith angles from the current scan line. The maxi-
mum number of will be 51, so the user must allocate atleast this much space for the double array pointed to
by sza. If the input file does not contain solar zenith angle information then AVH_ERROR is returned.

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetSolarZenithAngles 1



Avh_GetSolarZenithAnglesAt(3) aps_avhrr API Reference Avh_GetSolarZenithAnglesAt(3)

NAME
Avh_GetSolarZenithAnglesAt − get interpolated solar zenith angles for current AVHRR data record

SYNOPSIS
int Avh_GetSolarZenithAnglesAt (AVHRR *avh, int nout, int *samps, double *sza);

ARGUMENTS
avh AVHRR stream pointer

nout number of Samples

samps sample Locations

sza interpolated solar zenith angles

DESCRIPTION
Avh_GetSolarZenithAnglesAt will linearly interpolate the solar zenith angles for the scan line to those
sample locations given by the user. It will attempt to extrapolate, but sample locations should be between 0
and 409 for GAC or 2048 for LAC/HRPT. If the input file does not contain solar zenith angle information
then AVH_ERROR is returned.

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetSolarZenithAnglesAt 1



Avh_GetStartTime(3) aps_avhrr API Reference Avh_GetStartTime(3)

NAME
Avh_GetStartTime − get starting time from AVHRR data stream

SYNOPSIS
int Avh_GetStartTime (AVHRR *avh, int *year, int *day, int *msec);

ARGUMENTS
avh AVHRR stream pointer

year start of data set year (e.g. 1999)

day start of data set day of year (e.g. 324)

msec start of data set time of day

DESCRIPTION
Avh_GetStartTime returns the start time as read from the AVHRR data stream header (or first record in
the case of Level-0 data). Avh_Open must be called to open the AVHRR data stream.

The year is returned as a 4-digit year. The day is returned as a 3-digit day of year and time is retuned as the
UTC milliseconds of the day.

For NESDIS Level-1b and NESDIS KLM Level-1b files, the time is extracted from the data set header
record.

For the Level-0 format, the time of the first record is returned. The year field will be set to -1 since this for-
mat has no year information. It is up to the user to correct this. The return status of AVH_ERROR will
also be returned.

RETURNS
AVH_OK if successful, or AVH_ERROR if year not available.

6 September 2004 Avh_GetStartTime 1



Avh_GetTelemetry(3) aps_avhrr API Reference Avh_GetTelemetry(3)

NAME
Avh_GetTelemetry − get the telemetry for current AVHRR data record

SYNOPSIS
int Avh_GetTelemetry (AVHRR *avh, short *ramp, short *prt, short *bb[10], short *sp[10]);

ARGUMENTS
avh AVHRR stream pointer

ramp RAMP calibration

prt PRT calibration

bb[10] -- undescribed --

sp[10] -- undescribed --

DESCRIPTION
Avh_GetTelemetry will return the telemetry data (ramp calibration, the three PRT counts, the 10 internal
target, or black body, counts for the 3 thermal channels, and the 10 space view counts for the 5 visible chan-
nels.

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetTelemetry 1



Avh_GetThermalCalibration(3) aps_avhrr API Reference Avh_GetThermalCalibration(3)

NAME
Avh_GetThermalCalibration − get thermal calibration for current AVHRR data stream record

SYNOPSIS
int Avh_GetThermalCalibration (AVHRR *avh, int *ncal, double *calData[3]);

ARGUMENTS
avh AVHRR stream pointer

ncal number of calibrations returned

calData[3] -- undescribed --

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetThermalCalibration 1



Avh_GetTime(3) aps_avhrr API Reference Avh_GetTime(3)

NAME
Avh_GetTime − get time for current AVHRR data record

SYNOPSIS
int Avh_GetTime (AVHRR *avh, int *year, int *day, int *msec);

ARGUMENTS
avh AVHRR stream pointer

year scan line year (e.g. 1999)

day scan line day of year (e.g. 324)

msec scan line time of day

DESCRIPTION
If the year cannot be determined from the file, a -1 is returned in its place. This is the case for the HRPT
Level-0 format. The user is responsible for filling in the value.

RETURNS
AVH_OK if successful, or AVH_ERROR if one of the entries are wrong.

6 September 2004 Avh_GetTime 1



Avh_GetVideo(3) aps_avhrr API Reference Avh_GetVideo(3)

NAME
Avh_GetVideo − extract video data from AVHRR data stream record

SYNOPSIS
int Avh_GetVideo (AVHRR *avh, short *video, int *numSamples, int numChans, int *chans, int mode);

ARGUMENTS
avh AVHRR stream pointer

video video data in AVH_BIL or AVH_BIP in order of chans

numSamples number of samples returned

numChans number of channels to return (0, 1, 2, 3, 4, or 5 for 3A)

chans which channels to extract

mode return video in AVH_BIL or AVH_BIP format

DESCRIPTION
Avh_GetVideo will return the video in counts for the given line, if found, and the number of samples (1 to
2048) returned. The channels returned are stored in the integer array chans. The data can be returned in
video in either AVH_BIL or AVH_BIP format.

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetVideo 1



Avh_GetVisibleCalibration(3) aps_avhrr API Reference Avh_GetVisibleCalibration(3)

NAME
Avh_GetVisibleCalibration − get visible calibration for current AVHRR data stream record

SYNOPSIS
int Avh_GetVisibleCalibration (AVHRR *avh, int *ncal, int *knee, double *slope[3], double *intp[3]);

ARGUMENTS
avh AVHRR stream pointer

ncal number of calibration elements returned

knee calibration Knee (ch1,ch2,ch3A)

slope[3] -- undescribed --

intp[3] -- undescribed --

DESCRIPTION
This function gets the calibration data from the input AVHRR stream for the visible channels, if the stream
contains that data. For the NOAA, satellites, this calibration consists of a slope and intercept for two chan-
nels. For KLM satellites, this calibration consists of two slopes and intercepts per channel with another
array holding the location of the the break (or knee) in the bi-linear calibration. For Lev el-0 data,
AVH_ERROR is returned as that data stream does not contain any calibration data.

RETURNS
AVH_OK if successful, or AVH_ERROR if anything goes wrong.

6 September 2004 Avh_GetVisibleCalibration 1



Avh_IsKLM(3) aps_avhrr API Reference Avh_IsKLM(3)

NAME
Avh_IsKLM − determines if opened stream contains KLM data

SYNOPSIS
int Avh_IsKLM (AVHRR *avh);

ARGUMENTS
avh AVHRR stream pointer

DESCRIPTION
Determines if the opened stream (avh) contains KLM data.

RETURNS
A 1 (TRUE) if the AVHRR data stream pointed to by avh is from the KLM satellite. Otherwise, returns 0
(FALSE)

6 September 2004 Avh_IsKLM 1



Avh_Open(3) aps_avhrr API Reference Avh_Open(3)

NAME
Avh_Open − open an AVHRR file

SYNOPSIS
AVHRR * Avh_Open (const char * filename, const char *type, int format);

ARGUMENTS
filename name of file

type type of access to file

format format of AVHRR file (if known)

DESCRIPTION
Avh_Open opens an AVHRR data stream to the file pointed to by the parameter filename and returns a
pointer it.

type is a character string. The initial portion of type must consist of one of the following character
sequences

r or rb open for reading

w or wb
truncate or create for writing

a or ab append open for writing at end of file or create for writing

+,r+b or rb+
open for update (reading and writing)

+,w+b or wb+
truncate or create for update

+,a+b or ab+
append open for update at end-of-file or create for update

Opening a file for reading (when r is the first character of type) will fail if the file does not exist or
is unreadable.

If format is set to AVH_UNKNOWN, then Avh_Open will automatically determine the format of
the AVHRR data stream. This should be set if for some reason, Avh_Open fails to properly deter-
mine the format. Valid options are AVH_NESDIS, AVH_KLM, AVH_LVL0, AVH_THDF.

CAVEAT
Currently Avh_Open can only READ.

The format may be replaced by a struct pointer at some time in the future.

RETURNS
AVHRR stream pointer or NULL.

6 September 2004 Avh_Open 1



Avh_ReadDataRecord(3) aps_avhrr API Reference Avh_ReadDataRecord(3)

NAME
Avh_ReadDataRecord − advance data stream to next AVHRR record

SYNOPSIS
int Avh_ReadDataRecord (AVHRR *avh);

ARGUMENTS
avh AVHRR stream pointer

DESCRIPTION
Avh_ReadDataRecord reads the AVHRR data stream until the next AVHRR data record is read. The data
is internally unpacked. The user must use other public functions in avhIO to extract the data from these
internal structures.

RETURNS
AVH_OK if successful; Otherwise, AVH_ERROR is returned

6 September 2004 Avh_ReadDataRecord 1



Avh_ThermalCalBrown(3) aps_avhrr API Reference Avh_ThermalCalBrown(3)

NAME
Avh_ThermalCalBrown − calibration using Brown algorithm

SYNOPSIS
int Avh_ThermalCalBrown (double *btemp, short *video, int numSamps, int channel, int flags, FILE
*logfp, AVHRR *avh);

ARGUMENTS
btemp AVHRR brightness temperature (Kelvin)

video AVHRR count data stored in BIL format

numSamps number of samples in video

channel channel number (3, 4)

flags currently not used

logfp log file FP

avh AVHRR data stream pointer

DESCRIPTION
This routine calibrates NOAA-9/11/12/14 data. It is passed a single scan line in the original packed form as
a structure in the first argument and the unpacked and subsectioned video data as an array in the second
argument. The last three arguments contain an array of flags indicating which of the five channels are to be
processed, the number of samples in the second argument, and the FILE descriptor for logging messages.

Avh_ThermalCalBrown preforms a non-linear correction for channels 4 and 5. The method used here is
from Brown, James A; Brown, Otis B, and Evans, Robert H (RSMAS, U. of Miami) "Calibration of
Advanced Very High Resolution Radiometer Infrared Channels A New Approach to Nonlinear Correction"
in Journal of Geophysical Research (JGR), Vol. 98, c10:18257-18268.

The form is as follows

Tnl = a0 + a1*(temp-tartmp) + a2*(temp-tartmp)ˆ2

where Tnl is the nonlinearity correction, the tartmp is the internal target temperature in degrees Kelvin
(referred to as the "base-plate temperature")

6 September 2004 Avh_ThermalCalBrown 1



Avh_ThermalCalKLM(3) aps_avhrr API Reference Avh_ThermalCalKLM(3)

NAME
Avh_ThermalCalKLM − calibrate Thermal Channel using KLM algorithms

SYNOPSIS
int Avh_ThermalCalKLM (double *btemp, short *video, int numSamps, int channel, int flags, FILE
*logfp, AVHRR *avh);

ARGUMENTS
btemp AVHRR brightness temperature (Kelvin)

video AVHRR count data stored in BIL format

numSamps number of samples in video

channel channel number (2, 3, 4)

flags currently not used

logfp log file FP

avh AVHRR data stream pointer

DESCRIPTION
This function performs the AVHRR thermal channel data calibration according to KLM User’s Guide.

6 September 2004 Avh_ThermalCalKLM 1



Avh_ThermalCalNOAA(3) aps_avhrr API Reference Avh_ThermalCalNOAA(3)

NAME
Avh_ThermalCalNOAA − calibrate Thermal Channel using NOAA algorithms

SYNOPSIS
int Avh_ThermalCalNOAA (double *btemp, short *video, int numSamps, int channel, int flags, FILE
*logfp, AVHRR *avh);

ARGUMENTS
btemp AVHRR brightness temperature (Kelvin)

video AVHRR count data stored in BIL format

numSamps number of samples in video

channel channel number (2, 3, 4)

flags currently not used

logfp log file FP

avh AVHRR data stream pointer

DESCRIPTION
This function performs the AVHRR thermal channel data calibration according to NOAA Technical Memo-
randum NESS 107 - Rev.1.

6 September 2004 Avh_ThermalCalNOAA 1



Avh_VisibleCalKLM(3) aps_avhrr API Reference Avh_VisibleCalKLM(3)

NAME
Avh_VisibleCalKLM − apply calibration to visible channel data using NOAA-KLM algorithm

SYNOPSIS
int Avh_VisibleCalKLM (double *albedo, short *video, int numSamps, int channel, int flags, FILE
*logfp, AVHRR *avh);

ARGUMENTS
albedo AVHRR calibrated data

video AVHRR count data

numSamps number of samples in video

channel channel number (0, 1, 2)

flags currently not used

logfp log file FP

avh AVHRR data stream pointer

DESCRIPTION
This routine applies the calibration to the visible channel data to create the albedo data. The original count
data is stored in video and is returned in lvl1dat as percent albedo. This function uses the calibration slope
and intercepts as read from the AVHRR Level-1B data file. It is applied on a per scan line basis.

REFERENCE
Kidewell, ’KLM User’s Guide’

6 September 2004 Avh_VisibleCalKLM 1



Avh_VisibleCalNOAA(3) aps_avhrr API Reference Avh_VisibleCalNOAA(3)

NAME
Avh_VisibleCalNOAA − apply calibration to visible channel data using NOAA algorithm

SYNOPSIS
int Avh_VisibleCalNOAA (double *albedo, short *video, int numSamps, int channel, int flags, FILE
*logfp, AVHRR *avh);

ARGUMENTS
albedo AVHRR calibrated data stored in BIL format

video AVHRR count data stored in BIL format

numSamps number of samples in video

channel channel number (0 or 1)

flags currently not used

logfp log file FP

avh AVHRR data stream pointer

DESCRIPTION
This routine applies the calibration to the visible channel data to create the albedo data. The original count
data is stored in video and is returned in lvl1dat as percent albedo. This function uses the calibration slope
and intercepts as read from the AVHRR Level-1B data file. It is applied on a per scan line basis.

REFERENCE
Kidewell, "Polar Orbiter User’s Guide"

6 September 2004 Avh_VisibleCalNOAA 1


