
Aps_ApplyCoef(3) aps API Reference Aps_ApplyCoef(3)

NAME
Aps_ApplyCoef − apply bilinear coefficients

SYNOPSIS
void Aps_ApplyCoef (double ipin, double ilin, double *ipout, double *ilout, double *c, double *d);

ARGUMENTS
ipin input pixel coordinate

ilin input line coordinate

ipout output pixel coordinate

ilout output line coordinate

c coefficiants for pixel bilinear interp

d coefficiants for line bilinear interp

DESCRIPTION
Using the bilinear coefficients obtained from the Aps_GetCoef call (parameters c and d), this function will
apply them to the input pixel/line elements as such.

ipout = c(0)+c(1)*ipin+c(2)*ilin+c(3)*ipin*ilin
ilout = d(0)+d(1)*ipin+d(2)*ilin+d(3)*ipin*ilin

6 September 2004 Aps_ApplyCoef 1

Aps_ArgBox(3) aps API Reference Aps_ArgBox(3)

NAME
Aps_ArgBox − handle standard box -B option

SYNOPSIS
int Aps_ArgBox (char *subopt, int *type, double *isp, double *iep, double *isl, double *iel, double
*irp, double *irl);

ARGUMENTS
subopt string with options (optarg from getopt)

type box defined as file corner pts (1) or lat/lon (2)

isp starting pixel range/wlon

iep stopping pixel range/elon

isl starting line range/nlat

iel stopping line range/slat

irp pixel replication factor

irl line replication factors

DESCRIPTION
Aps_ArgBox is used to get the sub options for the standard box option (-B). The box option allows the
user to select a box from an image by specifying the starting pixel (isp), the ending pixel (iep), the starting
line (isl), and the ending line (iel). Additionally the user can select a non-integer replication factor in the
pixel and line direction (irp and irl), respectively.

For example, the user might put

-B isp=1,isl=1,iep=512,iel=512,irp=2,irl=2

or

-B nlat=31.0,wlon=-90.0,slat=27.0,elon=-85.0

This routine would be passed the string that starts with ‘‘isp’’. It would parse this string using the getsub-
opt(3) system call and return the user entered values. If the user does not supply a pixel or line range, a
value of -999 is returned. The replication factors are initially set to one.

RETURNS
0, if successful or a non-zero error status.

6 September 2004 Aps_ArgBox 1

Aps_AttrCopy(3) aps API Reference Aps_AttrCopy(3)

NAME
Aps_AttrCopy − copy an attribute from one file/sds to another file/sds

SYNOPSIS
int Aps_AttrCopy (int32 id_in, int32 id_out, char *attrIn, char *attrOut, int opt);

ARGUMENTS
id_in SDS id or file id for input

id_out SDS id or file id for output

attrIn name or index of attribute, NULL for all

attrOut name of attribute, NULL mean don’t rename

opt BY_NAME or BY_INDEX, FILE_ATTRS, SDS_ATTRS

DESCRIPTION
Aps_AttrCopy is used to copy attributes (SDS or File) from one SDS or File to another. A particular
attribute is selected by either the index number or its name. An individually selected attribute can also be
renamed.

To copy all file attributes from one HDF file to another HDF file

Aps_AttrCopy(from_file,to_file,NULL,NULL,FILE_ATTRS);

To copy all SDS attributes from one SDS to another SDS

Aps_AttrCopy(from_sds,to_sds,NULL,NULL,SDS_ATTRS);

To copy all file attributes which match the regular expression from one HDF file to another HDF file

re="a*";

Aps_AttrCopy(from_file,to_file,NULL,re,FILE_ATTRS);

or all SDS attributes from one SDS to another SDS

Aps_AttrCopy(from_sds,to_sds,NULL,re,SDS_ATTRS);

To copy the attribute "Slope" from one SDS to another SDS

Aps_AttrCopy(from_file,to_file,"Slope",NULL,BY_NAME);

To copy the attribute "Slope" from one SDS to another SDS but change the name to "scalingSlope".

Aps_AttrCopy(from_file,to_file,"Slope","scalingSlope",BY_NAME);

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_AttrCopy 1

Aps_AttrFree(3) aps API Reference Aps_AttrFree(3)

NAME
Aps_AttrFree − free ATTR structure

SYNOPSIS
int Aps_AttrFree (ATTR_obj *attrPtr);

ARGUMENTS
attrPtr pointer to ATTR_obj structure

DESCRIPTION
This routine frees memory allocated by APS_GetFileAttr and sets all fields in the attribute to zero.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_AttrFree 1

Aps_AttrIterate(3) aps API Reference Aps_AttrIterate(3)

NAME
Aps_AttrIterate − iterate on each file attribute in the file

SYNOPSIS
int Aps_AttrIterate (aps_t file_id , IterAttrFunc func, void *user_data);

ARGUMENTS
file_id ID returned by SDstart call

func function to call on each SDS

user_data additional data user might pass

DESCRIPTION
This function will call the user provided function for each SDS in the APS datafile. The iteration function
should return 1 (True) to continue to next SDS or 0 (False) when it wants to abort the looping.

6 September 2004 Aps_AttrIterate 1

Aps_AttrMake(3) aps API Reference Aps_AttrMake(3)

NAME
Aps_AttrMake − create a new attribute

SYNOPSIS
ATTR_obj* Aps_AttrMake (char *name, int nt, char *value);

ARGUMENTS
name name of the attribute

nt type of attribute

value string value

DESCRIPTION
The Aps_AttrMake function will create a new attribute object. Call Aps_AttrFree to free the attribute

attr = Aps_AttrMake("value", DFNT_INT32, "5");

will create a INT32 from text string 5

RETURNS
An ATTR_obj.

6 September 2004 Aps_AttrMake 1

Aps_AttrMakev(3) aps API Reference Aps_AttrMakev(3)

NAME
Aps_AttrMakev − create a new attribute from string vector

SYNOPSIS
ATTR_obj* Aps_AttrMakev (char *name, int nt, char **value);

ARGUMENTS
name name of the attribute

nt type of attribute

value string vector

DESCRIPTION
The Aps_AttrMakev function will create a new attribute object. Call Aps_AttrFree to free the attribute

char *argv[] = { "412.0", "443.0", "488.0", "510.0", "555.0" }; attr = Aps_AttrMakev("wavelengths",
DFNT_FLOAT32, argv);

will create a FLOAT32 attribute named ’wav elengths’ from the argv.

RETURNS
An ATTR_obj.

6 September 2004 Aps_AttrMakev 1

Aps_AttrNew(3) aps API Reference Aps_AttrNew(3)

NAME
Aps_AttrNew − create a new attribute

SYNOPSIS
ATTR_obj * Aps_AttrNew (char *name, int type, size_t count, void *ptr);

ARGUMENTS
name name of the attribute

type type of attribute

count number of attribute

ptr pointer to attribute data

DESCRIPTION
The Aps_AttrNew function will create a new attribute object. Call Aps_AttrFree to free the attribute

attr = Aps_AttrNew("name", DFNT_CHAR8, 5, "junk");

int32 i[3] = { 0, 1, 2 }; attr = Aps_AttrNew("array", DFNT_INT32, 3, &i);

RETURNS
An ATTR_obj.

6 September 2004 Aps_AttrNew 1

Aps_AttrPrint(3) aps API Reference Aps_AttrPrint(3)

NAME
Aps_AttrPrint − print attribute information to file

SYNOPSIS
int Aps_AttrPrint (ATTR_obj *attrPtr, FILE * fp, int format, int verbose);

ARGUMENTS
attrPtr pointer to ATTR_obj

fp standard C I/O file pointer

format format of output

verbose -- undescribed --

DESCRIPTION
Given an ATTR_obj, Aps_AttrPrint writes an ASCII description of its structure.

6 September 2004 Aps_AttrPrint 1

Aps_AttrReadDouble(3) aps API Reference Aps_AttrReadDouble(3)

NAME
Aps_AttrReadDouble − read an integer attribute

SYNOPSIS
int Aps_AttrReadDouble (aps_t sds_id , char *name, double *value);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

value integer values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrReadDouble 1

Aps_AttrReadFlag(3) aps API Reference Aps_AttrReadFlag(3)

NAME
Aps_AttrReadFlag − read a flag attribute

SYNOPSIS
int Aps_AttrReadFlag (aps_t sds_id , char *name, flag_t *value);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

value integer values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrReadFlag 1

Aps_AttrReadInt(3) aps API Reference Aps_AttrReadInt(3)

NAME
Aps_AttrReadInt − read an integer attribute

SYNOPSIS
int Aps_AttrReadInt (aps_t sds_id , char *name, int *value);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

value integer values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrReadInt 1

Aps_AttrReadString(3) aps API Reference Aps_AttrReadString(3)

NAME
Aps_AttrReadString − read a string attribute

SYNOPSIS
char * Aps_AttrReadString (aps_t sds_id , char *name);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
string, or NULL if not found

6 September 2004 Aps_AttrReadString 1

Aps_AttrWrite(3) aps API Reference Aps_AttrWrite(3)

NAME
Aps_AttrWrite − write attribute to id

SYNOPSIS
int Aps_AttrWrite (aps_t file_id , ATTR_obj *attr);

ARGUMENTS
file_id name of the attribute

attr attribute

RETURNS
An ATTR_obj.

6 September 2004 Aps_AttrWrite 1

Aps_AttrWriteCSV(3) aps API Reference Aps_AttrWriteCSV(3)

NAME
Aps_AttrWriteCSV − write/append to a CSV string attribute

SYNOPSIS
int Aps_AttrWriteCSV (aps_t file_id , char *name, char *string, int flags);

ARGUMENTS
file_id id of APS file

name name of attribute

string CSV string to be added

flags NO_DUPLICATES

DESCRIPTION
This routine is used to

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_AttrWriteCSV 1

Aps_AttrWriteDouble(3) aps API Reference Aps_AttrWriteDouble(3)

NAME
Aps_AttrWriteDouble − write a double attribute

SYNOPSIS
int Aps_AttrWriteDouble (aps_t sds_id , char *name, double value);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

value array of double values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrWriteDouble 1

Aps_AttrWriteDoublev(3) aps API Reference Aps_AttrWriteDoublev(3)

NAME
Aps_AttrWriteDoublev − write a double attribute

SYNOPSIS
int Aps_AttrWriteDoublev (aps_t sds_id , char *name, int n, double *values);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

n number of values

values array of double values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrWriteDoublev 1

Aps_AttrWriteFlag(3) aps API Reference Aps_AttrWriteFlag(3)

NAME
Aps_AttrWriteFlag − write an integer attribute

SYNOPSIS
int Aps_AttrWriteFlag (aps_t sds_id , char *name, flag_t value);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

value integer values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrWriteFlag 1

Aps_AttrWriteFlagv(3) aps API Reference Aps_AttrWriteFlagv(3)

NAME
Aps_AttrWriteFlagv − write an integer attribute

SYNOPSIS
int Aps_AttrWriteFlagv (aps_t sds_id , char *name, int n, flag_t *values);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

n number of values

values integer values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrWriteFlagv 1

Aps_AttrWriteInt(3) aps API Reference Aps_AttrWriteInt(3)

NAME
Aps_AttrWriteInt − write an integer attribute

SYNOPSIS
int Aps_AttrWriteInt (aps_t sds_id , char *name, int value);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

value integer values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrWriteInt 1

Aps_AttrWriteIntv(3) aps API Reference Aps_AttrWriteIntv(3)

NAME
Aps_AttrWriteIntv − write an integer attribute

SYNOPSIS
int Aps_AttrWriteIntv (aps_t sds_id , char *name, int n, int *values);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

n number of values

values integer values

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrWriteIntv 1

Aps_AttrWriteString(3) aps API Reference Aps_AttrWriteString(3)

NAME
Aps_AttrWriteString − write a string attribute

SYNOPSIS
int Aps_AttrWriteString (aps_t sds_id , char *name, char *value);

ARGUMENTS
sds_id SDS id to get color table number from

name attribute name

value string value

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_AttrWriteString 1

Aps_Bathy(3) aps API Reference Aps_Bathy(3)

NAME
Aps_Bathy − get depth at specified location

SYNOPSIS
double Aps_Bathy (double lat, double lon);

ARGUMENTS
lat input latitude, decimal degrees

lon input longitude, decimal degrees

DESCRIPTION
This routine extracts the bathymetery depth at the desired location. It uses bilinear interpolation on the
original 5-minute input file. If Aps_BathyInit is not called before this routine a value of 0.0 is returned.

RETURNS
The bathymetry (meters) of a (lat,lon) location or zero

6 September 2004 Aps_Bathy 1

Aps_BathyInit(3) aps API Reference Aps_BathyInit(3)

NAME
Aps_BathyInit − open and initialize the bathymetry file

SYNOPSIS
int Aps_BathyInit (char * file);

ARGUMENTS
file bathymetry file

DESCRIPTION
Opens the bathymetry data file and reads in all data in a 5-min resolution data file. The files contains 4321
samples per line with a total of 2161 lines. The index for each line represents 5 minutes of latitude with
line 1 at -90 S and line 21161 at 90 N, (2161 = 180 * 12 + 1). Each sample index represents 5 minutes of
longitude with sample 0 at 0 degrees and sample 4321 at 360 degrees. * (4321 = 360 * 12 + 1). The
bathymetry values are in whole meters.

RETURNS
0 if successfully opened, -1 otherwise.

6 September 2004 Aps_BathyInit 1

Aps_BitStream(3) aps API Reference Aps_BitStream(3)

NAME
Aps_BitStream − manipulates a bit stream.

SYNOPSIS
int Aps_BitStream (char *InputBitStream, int InputWordLength, int InputPadding, int InputLorR, char
*OutputBitStream, int OutputWordLength, int OutputPadding, int OutputLorR, int numWords);

ARGUMENTS
InputBitStream

pointer to start of input bit-stream

InputWordLength
number of bits that make up a "word"

InputPadding number of pad bits between words

InputLorR padding on left (1) or right (0)?

OutputBitStream
pointer to start of output bit-stream

OutputWordLength
number of bits that make up a "word"

OutputPadding
number of pad bits between words

OutputLorR padding on left (1) or right (0)?

numWords number of input words to extract

DESCRIPTION
Aps_BitStream allows the user to manipulate a bit stream. One use, is for unpacking a stream of bits
organized as 10-bit words for a telemetry (HRPT) and storing the into 2 bytes (16-bits). This can be
accomplised with the code like,

Aps_BitStream(ibuf,10,0,0,obuf,10,6,1,nwords);

The reverse can be accomplished simply by reversing the streams.

Aps_BitStream(ibuf,10,6,1,obuf,10,0,0,nwords);

|--------| 10-bit words, no padding
1010000100 0101101111 1101011100 01 (1st 32-bits of AVHRR frame sync)

|--------------| 16-bit words, 6 bit padding on left
0000001010000100 0000000101101111
|----| |-----| pad bits

|--------| |--------|

CAVEAT
This routine uses the OR operator to set the bits in the output stream. Therefore, the user should zero the
output stream (obuf) before calling this routine.

RETURNS
APS_OK

6 September 2004 Aps_BitStream 1

Aps_CloseNSIPS(3) aps API Reference Aps_CloseNSIPS(3)

NAME
Aps_CloseNSIPS − close a NSIPS file

SYNOPSIS
int Aps_CloseNSIPS (apsNSIPSFile * fp);

ARGUMENTS
fp NSIPS file pointer

DESCRIPTION
Closes a NSIPS file opened using the Aps_OpenNSIPS function.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_CloseNSIPS 1

Aps_CloseSPK(3) aps API Reference Aps_CloseSPK(3)

NAME
Aps_CloseSPK − close a SPK file

SYNOPSIS
int Aps_CloseSPK (apsSPKFile * fp);

ARGUMENTS
fp SeaPAK file pointer

DESCRIPTION
Closes a SPK file opened using the Aps_OpenSPK function.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_CloseSPK 1

Aps_ConvertAngle(3) aps API Reference Aps_ConvertAngle(3)

NAME
Aps_ConvertAngle − convert an angle from one unit to another

SYNOPSIS
int Aps_ConvertAngle (double inval, int inunit, double *ouval, int ouunit);

ARGUMENTS
inval input angle

inunit unit of input angle

ouval output angle

ouunit unit of output angle

DESCRIPTION
Aps_ConvertAngle takes a angle given in

(1) decimal degrees,
(2) packed DMS, or
(3) radians

and converts it to an angle in

(1) decimal degrees between -180.0 and 180.0,
(2) decimal degrees between 0.0 and 360.0,
(3) packed DMS between -180.0 and 180,
(4) packed DMS between 0.0 and 360.0,
(5) radians between -pi to pi, or
(6) radians between 0 and two pi

The parameter inunit should be one of the following

LL_DEGREES or 1, LL_DMS or 2, LL_RADIANS or 3

The parameter ouunit should be one of the following

LL_DEG180 or 1, LL_DMS180 or 3, LL_RAD1PI or 5
LL_DEG360 or 2, LL_DMS360 or 4, LL_RAD2PI or 6

RETURNS
APS_OK.

6 September 2004 Aps_ConvertAngle 1

Aps_CrossGPM(3) aps API Reference Aps_CrossGPM(3)

NAME
Aps_CrossGPM − check if quadralaterial contains the Prime Merdian

SYNOPSIS
int Aps_CrossGPM (double *lonc, int units);

ARGUMENTS
lonc four longitudinal corners of quadralateral

units units of longitudes in lonc

DESCRIPTION
Given a quadralaterial, Aps_CrossGPM will determine if the Greenwich Prime Median crosses through it.
The quadralaterial must be given in clockwise fashion such that lonc[0] is the North West point (lonc[1] is
the North East point, etc.). The units of the array are given the parameter units.

RETURNS
0 (true) if the Greenwhich Prime Meridian crosses through the given quadralateral. Otherwise, 1 (false) is
returned.

6 September 2004 Aps_CrossGPM 1

Aps_CrossIDL(3) aps API Reference Aps_CrossIDL(3)

NAME
Aps_CrossIDL − check if quadralaterial contains the International Dateline

SYNOPSIS
int Aps_CrossIDL (double *lonc, int units);

ARGUMENTS
lonc four longitudinal corners of quadralateral

units units of longitudes in lonc

DESCRIPTION
Given a quadralaterial, Aps_CrossIDL will determine if the International Date Line crosses through it.
The quadralaterial must be given in clockwise fashion such that lonc[0] is the North West point (lonc[1] is
the North East point, etc.). The units of the array are given the parameter units.

RETURNS
0 (true) if the International Date Line crosses through the given quadralateral. Ohterwise, a 1 (false) is
returned.

6 September 2004 Aps_CrossIDL 1

Aps_DecodeNSIPSHeader(3) aps API Reference Aps_DecodeNSIPSHeader(3)

NAME
Aps_DecodeNSIPSHeader − decode an NSIPS header from a buffer of data

SYNOPSIS
int Aps_DecodeNSIPSHeader (char *buf , nsips_hd *hd);

ARGUMENTS
buf buffer to hold NSIPS header

hd NSIPS header structure

DESCRIPTION
Given a buffer of data, Aps_DecodeNSIPSHeader will attempt to decode this data into an NSIPS header
structure. It can handle all three versions of the NSIPS header and both BIG_ENDIAN and LIT-
TLE_ENDIAN storages. It attempts to figure this out using the four bytes of the version number.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_DecodeNSIPSHeader 1

Aps_DecodeSPKHeader(3) aps API Reference Aps_DecodeSPKHeader(3)

NAME
Aps_DecodeSPKHeader − decode an SPK header from a buffer stream

SYNOPSIS
int Aps_DecodeSPKHeader (spk_hd *hd , char *buf);

ARGUMENTS
hd SPK header structure to be filled in

buf buffer stream to be decoded

DESCRIPTION
Given a buffer of data, Aps_DecodeSPKHeader will attempt to decode this data into an SPK header struc-
ture. It can handle both BIG_ENDIAN and LITTLE_ENDIAN storages. It attempts to figure this out
using the two bytes of the year field. The year must be between 1969 and 2068.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_DecodeSPKHeader 1

Aps_DefaultMapFileName(3) aps API Reference Aps_DefaultMapFileName(3)

NAME
Aps_DefaultMapFileName − get APS standard map file

SYNOPSIS
char * Aps_DefaultMapFileName (void);

ARGUMENTS
void no arguments

DESCRIPTION
This function tries to return the default map file which is normally set to $AUTO_DATA/maps.hdf. The
return string is allocated by this function and the user is responsible for freeing the memory. A NULL is
returned if an error is encountered. If $AUTO_DATA is not defined, then it will return
$AUTO_DIR/data/maps.hdf. If neither, AUTO_DATA or AUTO_DIR set, then it returns maps.hdf.

RETURNS
A pointer to a newly allocated string containing the map name, or NULL, if unsuccessful

6 September 2004 Aps_DefaultMapFileName 1

Aps_DoubleSwap(3) aps API Reference Aps_DoubleSwap(3)

NAME
Aps_DoubleSwap − swap a double

SYNOPSIS
double Aps_DoubleSwap (double *a);

ARGUMENTS
a double pointer

DESCRIPTION
This routine will swap a double type. It will handle double’s which are 4, 8, or 16 bytes long. It does a
simple byte order reversal. It does not handle non-sequential byte orderings like a PDP-11.

RETURNS
The swapped double value.

6 September 2004 Aps_DoubleSwap 1

Aps_DouglasPeuker(3) aps API Reference Aps_DouglasPeuker(3)

NAME
Aps_DouglasPeuker − Douglas-Peuker resolution dependent line simplification algorithm

SYNOPSIS
void Aps_DouglasPeuker (int n, double *xin, double *yin, double res, int *nout, double **xout, dou-
ble **yout);

ARGUMENTS
n number of input points

xin input x coordinates

yin input y coordinates

res resolution

nout number of output coordinates

xout output x coordinates

yout output y coordinates

DESCRIPTION
The Douglas-Peuker line simplification algorithm is used to reduce the number of points in a line without
while retaining its general shape. The reduction is based on a resolution that determines how well the
shape is retained.

The output array is allocated internally within Aps_DouglasPeuker. The user is responsible for calling
g_free to recover the memory.

RETURNS
The number of output points.

6 September 2004 Aps_DouglasPeuker 1

Aps_EncodeNSIPSHeader(3) aps API Reference Aps_EncodeNSIPSHeader(3)

NAME
Aps_EncodeNSIPSHeader − encode an NSIPS header from a buffer of data

SYNOPSIS
int Aps_EncodeNSIPSHeader (char *buf , nsips_hd hd , int data);

ARGUMENTS
buf buffer to receive data (NS_HDRSIZE)

hd NSIPS header structure

data APS_BIG_ENDIAN or APS_LITTLE_ENDIAN

DESCRIPTION
Given an NSIPS header strutucre, Aps_EncodeNSIPSHeader will encode this data into an buffer stream.
The user must allocate the buffer NS_HDRSIZE bytes and must also indicate the endianness the data will
be written to buffer. The choices are APS_BIG_ENDIAN or APS_LITTLE_ENDIAN.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_EncodeNSIPSHeader 1

Aps_EncodeSPKHeader(3) aps API Reference Aps_EncodeSPKHeader(3)

NAME
Aps_EncodeSPKHeader − encode an SPK header from a buffer of data

SYNOPSIS
int Aps_EncodeSPKHeader (char *buf , spk_hd hd , int data);

ARGUMENTS
buf buffer of SPK_HDRSIZE to receive data

hd SPK header structure to be encoded

data APS_BIG_ENDIAN or APS_LITTLE_ENDIAN

DESCRIPTION
Given a SPK header structure, Aps_EncodeSPKHeader will encode the structure into a buffer stream of
SPK_HDRSIZE bytes. The data is stored in the buffer based on the user selection of APS_BIG_ENDIAN
or APS_LITTLE_ENDIAN.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_EncodeSPKHeader 1

Aps_Endianess(3) aps API Reference Aps_Endianess(3)

NAME
Aps_Endianess − determine endianess

SYNOPSIS
int Aps_Endianess (void);

ARGUMENTS
void no arguments

DESCRIPTION
Determines if the host calling this routine is a big or little endian machine.

RETURNS
A 0 for BIG_ENDIAN machines, 1 for LITTLE_ENDIAN mahcines.

6 September 2004 Aps_Endianess 1

Aps_FileClose(3) aps API Reference Aps_FileClose(3)

NAME
Aps_FileClose − wrapper to HDF SDend function

SYNOPSIS
int Aps_FileClose (aps_t file_id);

ARGUMENTS
file_id id returned from Aps_FileOpen

DESCRIPTION
Close file opened with Aps_FileOpen

RETURNS
HDF error code from SDend

6 September 2004 Aps_FileClose 1

Aps_FileFormat(3) aps API Reference Aps_FileFormat(3)

NAME
Aps_FileFormat − determine a file format

SYNOPSIS
int Aps_FileFormat (char * filename, FILE * fp, char *type);

ARGUMENTS
filename name of file

fp file pointer, used if filename is NULL

type string indicating file type

DESCRIPTION
This subroutine returns an int and a string description of the format of the file given by filename or the file
descriptor fp. The return value is defined in the aps.h header. A string version of this same information is
also returned in type.

RETURNS
Integer indicating file type, like APS_FT_UNKNOWN, for example. See aps.h for complete list.

6 September 2004 Aps_FileFormat 1

Aps_FileOpen(3) aps API Reference Aps_FileOpen(3)

NAME
Aps_FileOpen − start SD interface

SYNOPSIS
aps_t Aps_FileOpen (char * filename, int mode);

ARGUMENTS
filename filename of HDF file

mode file access

DESCRIPTION
The Aps_FileOpen function is a wrapper of the HDF SDstart function. This routine will automatically cre-
ate an HDF file if one does not already exist and open the file for RDWR access. Additionally, an SDS
called "history" is generated and at file attribute called "softwareVersion", "createTime", "createAgency".

Unlike the default HDF behavior, Aps_FileOpen will not do automatic filling. That is, SDsetfillmode w/
SD_NOFILL is set. If the file created or written to is done sparsely, than the call must call SDsetfillmode
w/ SD_FILL right after this call to change that behavior.

RETURNS
SDS identitier returned by SDstart, or FAIL, if unsuccessful.

6 September 2004 Aps_FileOpen 1

Aps_FileSize(3) aps API Reference Aps_FileSize(3)

NAME
Aps_FileSize − return size of file

SYNOPSIS
off_t Aps_FileSize (const char * filename);

ARGUMENTS
filename name of file

DESCRIPTION
This routine returns the size of the file in bytes.

RETURNS
Size of file in bytes.

6 September 2004 Aps_FileSize 1

Aps_FlagClose(3) aps API Reference Aps_FlagClose(3)

NAME
Aps_FlagClose − close flag SDS and clear structure

SYNOPSIS
int Aps_FlagClose (flag_obj_t * flags);

ARGUMENTS
flags pointer to flag_obj_t structure

DESCRIPTION
This routine calls HDF routines to end access to the SDS object pointed to by SDS_obj, which should be
obtained from the call to Aps_SDSOpen. It also frees the memory assocated with the SDS_obj.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_FlagClose 1

Aps_FlagGetData(3) aps API Reference Aps_FlagGetData(3)

NAME
Aps_FlagGetData − read flag data from SDS

SYNOPSIS
int Aps_FlagGetData (aps_t file_id , char *name_or_index, flag_obj_t * flagPtr, flag_t **dataPtrPtr,
int opt);

ARGUMENTS
file_id file id

name_or_index
name or index of SDS

flagPtr pointer to receive SDS object

dataPtrPtr pointer to receive flag data

opt BY_NAME or BY_INDEX

DESCRIPTION
This API emulates the HDF routine SDreaddata. This routine, however, will call Aps_GetDataCalibration
and automatically convert the data from counts to geophsical values.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_FlagGetData 1

Aps_FlagGetMask(3) aps API Reference Aps_FlagGetMask(3)

NAME
Aps_FlagGetMask − check if given comma separated names are

SYNOPSIS
int Aps_FlagGetMask (flag_obj_t flags, char *names, flag_t *mask);

ARGUMENTS
flags flags array

names name to check

mask mask for given flags

RETURNS
APS_ERROR if any name is not a valid flag name, or the OR of each valid flag name.

6 September 2004 Aps_FlagGetMask 1

Aps_FlagOpen(3) aps API Reference Aps_FlagOpen(3)

NAME
Aps_FlagOpen − find and select an flags SDS by name/index

SYNOPSIS
int Aps_FlagOpen (aps_t file_id , char *sds_name_idx, flag_obj_t * flagPtr, int opt);

ARGUMENTS
file_id ID returned by SDstart call

sds_name_idx
name or index of flags SDS to open

flagPtr pointer to flags_t structure

opt BY_NAME or BY_INDEX

DESCRIPTION
Aps_OpenFlags takes a flags SDS name/index and an SDS interface identifer (returned from SDstart), finds
the desired SDS, selects it, and extracts information about it. This information is returned in the flags_t
structure. This structure is dynamically allocated and the pointer to this structure should never be modified
(or you’ll get a memory leak). Use Aps_CloseFlag to properly close down a flags_t opened via this routine.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_FlagOpen 1

Aps_FlagReadData(3) aps API Reference Aps_FlagReadData(3)

NAME
Aps_FlagReadData − read flag data from SDS

SYNOPSIS
int Aps_FlagReadData (flag_t * flags, int32 *start, int32 *stride, int32 *edge, flag_obj_t flags_sds);

ARGUMENTS
flags output flags from SDS

start array of start index for each dimension

stride array of stride’s for each dimension maybe NULL for no subsampling

edge array of edge indices for each dimension

flags_sds pointer to SDS_obj structure

DESCRIPTION
The Aps_ReadFlagData routine reads the

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_FlagReadData 1

Aps_FlagReadSimple(3) aps API Reference Aps_FlagReadSimple(3)

NAME
Aps_FlagReadSimple − read a flag_obj from file

SYNOPSIS
int Aps_FlagReadSimple (flag_obj_t * flags, flag_t **data);

ARGUMENTS
flags flag obj

data flag data

DESCRIPTION
This API emulates the HDF routine SDreaddata. This routine, however, will call Aps_GetDataCalibration
and automatically convert the data from counts to geophsical values.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_FlagReadSimple 1

Aps_FlagValidName(3) aps API Reference Aps_FlagValidName(3)

NAME
Aps_FlagValidName − check if given name is valid

SYNOPSIS
int Aps_FlagValidName (flag_obj_t flags, char *name);

ARGUMENTS
flags flags array

name name to check

RETURNS
-1 if name is not a valid flag name, or the index (0-31) for which flag bit it represents.

6 September 2004 Aps_FlagValidName 1

Aps_FloatSwap(3) aps API Reference Aps_FloatSwap(3)

NAME
Aps_FloatSwap − swap 32-bit floats

SYNOPSIS
float Aps_FloatSwap (float *a);

ARGUMENTS
a float pointer

DESCRIPTION
This routine will swap a float type.

RETURNS
The swapped float value.

6 September 2004 Aps_FloatSwap 1

Aps_GenGrid(3) aps API Reference Aps_GenGrid(3)

NAME
Aps_GenGrid − generate a control point grid

SYNOPSIS
int Aps_GenGrid (GCP_Grid *ctl, double latmin, double latmax, double lonmin, double lonmax, int
pixmin, int pixmax, int linmin, int linmax, int ncpp, int ncpl);

ARGUMENTS
ctl GCP grid structure

latmin southernmost latitude of grid (+-90 degs)

latmax northernmost latitude of grid (+-90 degs)

lonmin westernmost longitude of grid (0-360 or +-180 degs)

lonmax easternmost longitude of grid (0-360 or +-180 degs)

pixmin start pixel index

pixmax end pixel index

linmin start line index

linmax end line index

ncpp num of points to generate per line

ncpl num of points to generate per pixel col

DESCRIPTION
APS_GenGrid will create a control point grid given the geographical and image extents as well as how
many control points to produce. For example, to make a grid over an 200x200 image with central points
ev ery 20 pixels and lines such that the top left corner of the image is 30 (degrees) N and 100 (degrees) W
and the bottom right corner is 10 (degrees) N and 80 (degrees) W (the Gulf of Mexico), we use:

APS_GenGrid(ctl, 10.0, 30.0, 80.0, 100.0, 1, 200, 1, 200, 10, 10)

Note this function is use for generating a ‘‘canned’’ GCP structure, not for one used by an satellite process-
ing program. Generally, those must be ‘‘hand rolled’’ specifically by each satellite processing program to
handle the peculiarities of each satellite.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise.

6 September 2004 Aps_GenGrid 1

Aps_GetAgency(3) aps API Reference Aps_GetAgency(3)

NAME
Aps_GetAgency − sets the "createAgency" attribute

SYNOPSIS
char* Aps_GetAgency (aps_t file_id);

ARGUMENTS
file_id SDS id to receive attribute

DESCRIPTION
Adds the "createAgency" attribute setting it as needed.

RETURNS
A APS_ERROR if fails, otherwise APS_OK

6 September 2004 Aps_GetAgency 1

Aps_GetArchivePath(3) aps API Reference Aps_GetArchivePath(3)

NAME
Aps_GetArchivePath − sets the archive path attribute

SYNOPSIS
char* Aps_GetArchivePath (aps_t file_id);

ARGUMENTS
file_id SDS id to receive attribute

DESCRIPTION
Returns the "archivePath" attribute setting it as needed.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetArchivePath 1

Aps_GetBrowseCalibration(3) aps API Reference Aps_GetBrowseCalibration(3)

NAME
Aps_GetBrowseCalibration − get browse calibration parameters for SDS

SYNOPSIS
int Aps_GetBrowseCalibration (SDS_obj sds, int * func, double *slope, double *intp, double *range);

ARGUMENTS
sds SDS_obj from which to get browse calibration

func type of scaling function

slope slope of scaling function

intp intercept of scaling function

range range of data

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse calibration was
saved with the array. The func, slope, intercept, and range are suggestions to use for making an image of
the input data.

RETURNS
0 if neither is found.
1 if slope/intp defined
2 if range is defined

6 September 2004 Aps_GetBrowseCalibration 1

Aps_GetBrowseColorTable(3) aps API Reference Aps_GetBrowseColorTable(3)

NAME
Aps_GetBrowseColorTable − get browse calibration parameters for SDS

SYNOPSIS
int Aps_GetBrowseColorTable (SDS_obj sds, int *ct);

ARGUMENTS
sds SDS_obj from which to get browse calibration

ct colortable number

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_GetBrowseColorTable 1

Aps_GetBrowsePath(3) aps API Reference Aps_GetBrowsePath(3)

NAME
Aps_GetBrowsePath − sets the browse path attribute

SYNOPSIS
char* Aps_GetBrowsePath (aps_t file_id);

ARGUMENTS
file_id SDS id to receive attribute

DESCRIPTION
Adds the "browsePath" attribute setting it as needed.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetBrowsePath 1

Aps_GetCoef(3) aps API Reference Aps_GetCoef(3)

NAME
Aps_GetCoef − get coefficients for bilinear interpolation

SYNOPSIS
int Aps_GetCoef (double *ixin, double *iyin, double *ixout, double *iyout, double *c, double *d);

ARGUMENTS
ixin input pixel quadrilateral corner points

iyin input line quadrilateral corner points

ixout output pixel quadrilateral corner points

iyout output line quadrilateral corner points

c coefficiants for bilinear interpolation of pixel coordinates

d coefficiants for bilinear interpolation of line coordinates

DESCRIPTION
Aps_Getcoef calculates the bilinear coefficients for two individual quadrilaterals undergoing a geometric
transformation. The input and output quadrilaterals are defined by the four corner coordinate pairs. ixin,
iyin, are the input pixel (line) corner coordinates corresponding to upper left, upper right, lower left, and
lower right corners respectively. ixout, iyout are the respective output corners. Using these 16 values,
Aps_GetCoef returns the bilinear coefficients along the x and y directions (c and d, respectively)

RETURNS
APS_OK

6 September 2004 Aps_GetCoef 1

Aps_GetDataCalibration(3) aps API Reference Aps_GetDataCalibration(3)

NAME
Aps_GetDataCalibration − get calibration parameters for SDS

SYNOPSIS
int Aps_GetDataCalibration (SDS_obj sds, int *type, double *slope, double *intp);

ARGUMENTS
sds SDS_obj from which to get data calibration

type type of scaling function

slope slope of scaling function

intp intercept of scaling function

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a calibration was saved with
the array. The slope and intercept are used to convert the value from the SDS array to its "proper" value via
the function,

value = slope * array_value + intercept

Initally slope is set to 1.0 and intercept is set to 0.0.

RETURNS
2 if a slope and intercept were found.
1 if either is found.
0 if neither is found.

6 September 2004 Aps_GetDataCalibration 1

Aps_GetDefaultBathyFileName(3) aps API Reference Aps_GetDefaultBathyFileName(3)

NAME
Aps_GetDefaultBathyFileName − get name to default bathymetery file

SYNOPSIS
char * Aps_GetDefaultBathyFileName (void);

ARGUMENTS
void no arguments

DESCRIPTION
This routine returns the default location of the bathymetery file. Ideally, the environment variable
AUTO_DAT A will have been set. It is used to compute the fullpathname. Otherwise, this function will
return the default filename, BATHY.DAT .

ENVIRONMENT VARIABLES
AUTO_DAT A

RETURNS
A pointer to an allocated string containing the bathymetery file name, or NULL if failed to obtain name.

6 September 2004 Aps_GetDefaultBathyFileName 1

Aps_GetEndTime(3) aps API Reference Aps_GetEndTime(3)

NAME
Aps_GetEndTime − get end time of APS file

SYNOPSIS
void Aps_GetEndTime (aps_t file_id , int *year, int *doy, int *msec, char **str);

ARGUMENTS
file_id id of APS file

year year

doy day of year

msec millisecond time of day

str the time in string format

DESCRIPTION
This routine extracts the end time from given file.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetEndTime 1

Aps_GetFileAttr(3) aps API Reference Aps_GetFileAttr(3)

NAME
Aps_GetFileAttr − get a file attribute object

SYNOPSIS
int Aps_GetFileAttr (aps_t file_id , char *attrNameOrIndex, ATTR_obj *attrPtr, int32 opt);

ARGUMENTS
file_id ID returned by SDstart call

attrNameOrIndex
name of file attribute

attrPtr pointer to ATTR_obj structure

opt BY_NAME or BY_INDEX

DESCRIPTION
Aps_GetFileAttr takes a file name/attribute and an SDS interface identifer (returned from SDstart), finds
the desired file attribute and and returning the attribute in an Attribute Object. Use Aps_AttrFree to free
memory associated with this call.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_GetFileAttr 1

Aps_GetFileClassification(3) aps API Reference Aps_GetFileClassification(3)

NAME
Aps_GetFileClassification − get file version attribute

SYNOPSIS
char* Aps_GetFileClassification (aps_t file_id);

ARGUMENTS
file_id file id

RETURNS
file name

6 September 2004 Aps_GetFileClassification 1

Aps_GetFileName(3) aps API Reference Aps_GetFileName(3)

NAME
Aps_GetFileName − get file name attribute

SYNOPSIS
char* Aps_GetFileName (aps_t file_id);

ARGUMENTS
file_id file id

RETURNS
file name

6 September 2004 Aps_GetFileName 1

Aps_GetFileVersion(3) aps API Reference Aps_GetFileVersion(3)

NAME
Aps_GetFileVersion − get file version attribute

SYNOPSIS
char* Aps_GetFileVersion (aps_t file_id);

ARGUMENTS
file_id file id

RETURNS
file name

6 September 2004 Aps_GetFileVersion 1

Aps_GetMask(3) aps API Reference Aps_GetMask(3)

NAME
Aps_GetMask − get the input masks

SYNOPSIS
char** Aps_GetMask (aps_t file_id , flag_t *mask);

ARGUMENTS
file_id SDS id to receive attribute

mask intercpt

DESCRIPTION
Adds the "fileStatus" attribute setting it as needed.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetMask 1

Aps_GetOtherDataCalibration(3) aps API Reference Aps_GetOtherDataCalibration(3)

NAME
Aps_GetOtherDataCalibration − get calibration parameters for SDS

SYNOPSIS
int Aps_GetOtherDataCalibration (SDS_obj sds, char *units, int *type, double *slope, double *intp);

ARGUMENTS
sds SDS_obj from which to get data calibration

units the units to get data calibration for

type type of scaling function

slope slope of scaling function

intp intercept of scaling function

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a calibration was saved with
the array. The slope and intercept are used to convert the value from the SDS array to its "proper" value via
the function,

value = slope * array_value + intercept

Initally slope is set to 1.0 and intercept is set to 0.0.

RETURNS
2 if a slope and intercept were found.
1 if either is found.
0 if neither is found.

6 September 2004 Aps_GetOtherDataCalibration 1

Aps_GetProdList(3) aps API Reference Aps_GetProdList(3)

NAME
Aps_GetProdList − get product list

SYNOPSIS
char ** Aps_GetProdList (aps_t file_id);

ARGUMENTS
file_id id of APS file

DESCRIPTION
This routine sets the end time from the given file.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetProdList 1

Aps_GetProduct(3) aps API Reference Aps_GetProduct(3)

NAME
Aps_GetProduct − get product attributes

SYNOPSIS
int Aps_GetProduct (int32 sds_id , char **product, char **algorithm, char **units, int *status);

ARGUMENTS
sds_id SDS id

product pointer to receive string containing product name

algorithm pointer to receive string containing algorithm

units pointer to receive string containing products units

status status of product

6 September 2004 Aps_GetProduct 1

Aps_GetProductStatusCode(3) aps API Reference Aps_GetProductStatusCode(3)

NAME
Aps_GetProductStatusCode − get the "productStatus" attribute

SYNOPSIS
char* Aps_GetProductStatusCode (int code);

ARGUMENTS
code code from productStatus attribute

DESCRIPTION
Returns address to a static string representing the productStatus attribute.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetProductStatusCode 1

Aps_GetStartTime(3) aps API Reference Aps_GetStartTime(3)

NAME
Aps_GetStartTime − get start time of APS file

SYNOPSIS
void Aps_GetStartTime (aps_t file_id , int *year, int *doy, int *msec, char **str);

ARGUMENTS
file_id id of APS file

year year

doy day of year

msec millisecond time of day

str the time in string format

DESCRIPTION
This routine extracts the start time from the given file.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetStartTime 1

Aps_GetValidRange(3) aps API Reference Aps_GetValidRange(3)

NAME
Aps_GetValidRange − get valid range parameters for SDS

SYNOPSIS
int Aps_GetValidRange (SDS_obj sds, double *range);

ARGUMENTS
sds SDS_obj from which to get data calibration

range range of data

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a valid range is given for a
the product. The valid range is a suggestion about what values are considered valid for the given product.
If not found, the ranges will be set to -DBL_MAX and DBL_MAX.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_GetValidRange 1

Aps_GetValueDouble(3) aps API Reference Aps_GetValueDouble(3)

NAME
Aps_GetValueDouble − extract a double from a buffer stream

SYNOPSIS
double Aps_GetValueDouble (char *ptr, size_t offset, int num, int endian);

ARGUMENTS
ptr Pointer to input buffer stream

offset Offset of location of buffer stream

num Number of bytes of buffer stream

endian Endianess of buffer stream

DESCRIPTION
Given a buffer stream pointed to by ptr and an offset into that stream, this routine will convert the next num
number of bytes to a double. The number of bytes must be either 4 or 8. The byte order of the buffer
stream is set by the argument endian. This should be set to APS_LITTLE_ENDIAN or
APS_BIG_ENDIAN. The buffer stream data will be converted to the proper double type of the calling pro-
gram.

RETURNS
The double value extracted from buffer stream

6 September 2004 Aps_GetValueDouble 1

Aps_GetValueInt(3) aps API Reference Aps_GetValueInt(3)

NAME
Aps_GetValueInt − extract an int from a buffer stream

SYNOPSIS
int Aps_GetValueInt (char *ptr, size_t offset, int num, int endian);

ARGUMENTS
ptr pointer to input buffer stream

offset offset of location of int in buffer stream

num number of bytes of int in buffer stream

endian endianess of int in buffer stream

DESCRIPTION
Given a buffer stream pointed to by ptr and an offset into that stream, this routine will convert the next num
number of bytes to an int. The number of bytes must be either 1, 2, or 4. The byte order of the buffer
stream is set by the argument endian. This should be set to APS_LITTLE_ENDIAN or
APS_BIG_ENDIAN. The buffer stream data will be converted to the proper int type of the calling pro-
gram.

RETURNS
The integer value extracted from buffer stream

6 September 2004 Aps_GetValueInt 1

Aps_GridEqual(3) aps API Reference Aps_GridEqual(3)

NAME
Aps_GridEqual − compare two control grids

SYNOPSIS
int Aps_GridEqual (GCP_Grid ctl1, GCP_Grid ctl2);

ARGUMENTS
ctl1 first GCP grid structure

ctl2 second GCP grid structure

DESCRIPTION
This routine determines whether two GCP_Grid structures are equal. It compares each an every entry.

RETURNS
APS_OK is both are equal, APS_ERROR if not

6 September 2004 Aps_GridEqual 1

Aps_GridInit(3) aps API Reference Aps_GridInit(3)

NAME
Aps_GridInit − initialize grid convesion

SYNOPSIS
GRID * Aps_GridInit (GCP_Grid *ctl, int imgPixels, int imgLines);

ARGUMENTS
ctl input grid

imgPixels number of pixels

imgLines number of lines

DESCRIPTION
this routine generates arrays of indices for the all pixel and line elements which point to the right control
points for speeding up interpolation. Otherwise, we’d hav e to hunt the grid for the bounding box.

It only need to be called, if in the same program, the control points information have been changed.

AUTHOR
Based on code from Gary Fu, 7/27/95

RETURNS
An allocated GRID structure or NULL, if unsuccessful.

6 September 2004 Aps_GridInit 1

Aps_HistoryAdd(3) aps API Reference Aps_HistoryAdd(3)

NAME
Aps_HistoryAdd − append to file history

SYNOPSIS
int Aps_HistoryAdd (aps_t file_id , char *history);

ARGUMENTS
file_id file id

history history to add

DESCRIPTION
This routine will append the user’s text to the "history" SDS located in the file pointed to by file_id. This
SDS is a char8 dimensional array. When a file is first creadted using the Aps_FileOpen function, this array
is created. If the file pointed to by file_id does not currently have a "history" SDS, the Aps_HistoryAdd
function will create it.

6 September 2004 Aps_HistoryAdd 1

Aps_HistoryCopy(3) aps API Reference Aps_HistoryCopy(3)

NAME
Aps_HistoryCopy − copy file history

SYNOPSIS
int Aps_HistoryCopy (aps_t file_in, aps_t file_out);

ARGUMENTS
file_in file id

file_out file id

DESCRIPTION
This routine will append the user’s text to the "history" SDS located in the file pointed to by file_id. This
SDS is a char8 dimensional array. When a file is first creadted using the Aps_FileOpen function, this array
is created. If the file pointed to by file_id does not currently have a "history" SDS, the Aps_HistoryAdd
function will create it.

6 September 2004 Aps_HistoryCopy 1

Aps_HistoryPrefix(3) aps API Reference Aps_HistoryPrefix(3)

NAME
Aps_HistoryPrefix − set the history prefix

SYNOPSIS
int Aps_HistoryPrefix (char *prefix);

ARGUMENTS
prefix string to be prepended to history

DESCRIPTION
This routine will set a prefix used for all history strings added to a file using Aps_HistoryAdd and Aps_His-
toryPrint.

6 September 2004 Aps_HistoryPrefix 1

Aps_HistoryPrint(3) aps API Reference Aps_HistoryPrint(3)

NAME
Aps_HistoryPrint − append to file history

SYNOPSIS
int Aps_HistoryPrint (aps_t file_id , FILE * fp, char * format,);

ARGUMENTS
file_id file id to write history

fp file point to print history

format history to add

... variable arguments

DESCRIPTION
This routine will append the user’s text to the "history" SDS located in the file pointed to by file_id. This
SDS is a char8 dimensional array. When a file is first creadted using the Aps_FileOpen function, this array
is created. If the file pointed to by file_id does not currently have a "history" SDS, the Aps_HistoryAdd
function will create it.

6 September 2004 Aps_HistoryPrint 1

Aps_Int16Swap(3) aps API Reference Aps_Int16Swap(3)

NAME
Aps_Int16Swap − swap 16-bit integers

SYNOPSIS
int16_t Aps_Int16Swap (int16_t *a);

ARGUMENTS
a int16 pointer

DESCRIPTION
Swap a 16-bit integer

RETURNS
The swapped int_16 value.

6 September 2004 Aps_Int16Swap 1

Aps_Int32Swap(3) aps API Reference Aps_Int32Swap(3)

NAME
Aps_Int32Swap − swap 32-bit integers

SYNOPSIS
int32_t Aps_Int32Swap (int32_t *a);

ARGUMENTS
a int32 pointer

DESCRIPTION
Swap a 32-bit integer

RETURNS
The swapped int_32 value.

6 September 2004 Aps_Int32Swap 1

Aps_IntSwap(3) aps API Reference Aps_IntSwap(3)

NAME
Aps_IntSwap − swap an int

SYNOPSIS
int Aps_IntSwap (int *a);

ARGUMENTS
a int pointer

DESCRIPTION
This routine will swap an int type. It will handle int’s which are 2, 4, or 8 bytes long. It does a simple byte
order reversal. It does not handle non-sequential byte orderings like a PDP-11.

RETURNS
The swapped integer value.

6 September 2004 Aps_IntSwap 1

Aps_InvertMatrix(3) aps API Reference Aps_InvertMatrix(3)

NAME
Aps_InvertMatrix − solve linear Algebra equation Ax = b

SYNOPSIS
int Aps_InvertMatrix (double *A[4], double *b, int nRowCols, int l, double *x);

ARGUMENTS
A[4] -- undescribed --

b column Matrix

nRowCols number of Rows and Columns, must be 4

l something..

x resultant column matrix

DESCRIPTION
A is [cols][rows]; remember C is row-major, not column-major like Fortran.

Aps_InvertMatrix inverts a matrix in place and solves a set of simultaneous linear equations. If only
matrix inversion is desired, the vector of the right hand should all be set to one. Execution time varies
approximately as Nˆ3. First argument is the matrix to be inverted, (the inverse will be returned in this
array) and should be a two dimensional array l by l in size. The second argument is a vector of length n.
The third and fourth arguments are the sizes of the b_vector and a_matrix, respectively. The last argument
is

CAVEAT
This routine has been hard-coded for use by the APS projection code It is not a general matrix inversion
algorithm. Its use is not recommended. That is cols=4 and rows=4

RETURNS
APS_OK.

6 September 2004 Aps_InvertMatrix 1

Aps_LinearInterp(3) aps API Reference Aps_LinearInterp(3)

NAME
Aps_LinearInterp − linear interpolation

SYNOPSIS
void Aps_LinearInterp (int nin, double *xin, double *yin, int nout, double *xout, double *yout);

ARGUMENTS
nin Number of input values

xin Known x values for function

yin Known values for input x values

nout Number of output values

xout Desired x values for function

yout Interpolated values of function for desired x values

DESCRIPTION
Linearly interpolate a series of f(x) values for a given range of x’s (xin and yin) to a new series of f(x) val-
ues (yout) for a different range of x’s (xout).

Thus xin, yin are your known inputs, xout is the locations for which you wish to know yout.

6 September 2004 Aps_LinearInterp 1

Aps_LinearInterpF(3) aps API Reference Aps_LinearInterpF(3)

NAME
Aps_LinearInterpF − linear interpolation

SYNOPSIS
void Aps_LinearInterpF (int nin, float *xin, float *yin, int nout, float *xout, float *yout);

ARGUMENTS
nin Number of input values

xin Known x values for function

yin Known values for input x values

nout Number of output values

xout Desired x values for function

yout Interpolated values of function for desired x values

DESCRIPTION
Linearly interpolate a series of f(x) values for a given range of x’s (xin and yin) to a new series of f(x) val-
ues (yout) for a different range of x’s (xout).

Thus xin, yin are your known inputs, xout is the locations for which you wish to know yout.

6 September 2004 Aps_LinearInterpF 1

Aps_LinearRegress(3) aps API Reference Aps_LinearRegress(3)

NAME
Aps_LinearRegress − linear regression

SYNOPSIS
void Aps_LinearRegress (int n, double *xdata, double *ydata, double *G0, double *G1, double
*r_squared);

ARGUMENTS
n length of array

xdata x-axis data

ydata y-axis data

G0 first coefficient

G1 second coefficient

r_squared output r squared value

DESCRIPTION
Computes linear regression coefficents for x, y data. Uses the algorithm from the Origin Manual pg 293.

6 September 2004 Aps_LinearRegress 1

Aps_LonDiff(3) aps API Reference Aps_LonDiff(3)

NAME
Aps_LonDiff − calculate longitudinal difference

SYNOPSIS
double Aps_LonDiff (double lon1, double lon2, int inunits);

ARGUMENTS
lon1 longitude of point 1

lon2 longitude of point 2

inunits units of input longitudes

DESCRIPTION
Aps_LonDiff returns the difference between two longitudes. If both longitudes are the same, the difference
is assumed to be the whole circle. The east and west longitudes are specified by inunit (see Aps_Conver-
tAngle). The result will be returned in the range 0 to 360 degrees or equivalent DMS or radian values
according to inunits.

RETURNS
Longitudinal difference between 0 and 360 degrees.

6 September 2004 Aps_LonDiff 1

Aps_LonMid(3) aps API Reference Aps_LonMid(3)

NAME
Aps_LonMid − calculate longitudinal midpoint

SYNOPSIS
double Aps_LonMid (double lon1, double lon2, int inunits, int ouunits);

ARGUMENTS
lon1 longitude of point 1

lon2 longitude of point 2

inunits units of input longitudes

ouunits units for returned longitudinal midpoint

DESCRIPTION
Aps_LonMid returns the mid-point between two longitudes. The input longitudes are specified by inunit
(see Aps_ConvertAngle) and the mid-point is specified by ouunit.

RETURNS
Longitudinal midpoint.

6 September 2004 Aps_LonMid 1

Aps_MakeProductSDS(3) aps API Reference Aps_MakeProductSDS(3)

NAME
Aps_MakeProductSDS − create a geophysical product SDS

SYNOPSIS
int Aps_MakeProductSDS (aps_t file_id , PROD_obj *prod);

ARGUMENTS
file_id file id returned from Aps_FileOpen

prod pointer to PROD_obj structure to create

DESCRIPTION
This function takes a PROD_obj and creates the Scientific Data Set. It also appends all the required
attributes for an APS SDS. If it fails to create the product the field "output" of the PROD_obj will be set to
zero. That is, prod.output = 0;

RETURNS
APS_OK

6 September 2004 Aps_MakeProductSDS 1

Aps_MapDistance(3) aps API Reference Aps_MapDistance(3)

NAME
Aps_MapDistance − calculate distance between geographical points

SYNOPSIS
double Aps_MapDistance (double lat1, double lon1, double lat2, double lon2, int inunit, int ouunit);

ARGUMENTS
lat1 latitude of first point

lon1 longitude of first point

lat2 latitude of first point

lon2 longitude of first point

inunit units of input lat/lon pairs

ouunit units for returned distance

DESCRIPTION
Calculate the distance between to lat/long pairs using the Haversine Formula which gives mathematically
exact results. It assumes a spherical Earth with radius of 6367 km.

The distance is returned in kilometers (LL_KM), unless ouunit is specified as LL_METERS for meters, or
LL_NM for nautical miles.

REFERENCES
R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope Vol 68, No 2,1998, p. 159
www.census.gov/cgi-bin/geo/gisfaq?Q5.1

RETURNS
Distance in kilometers (or meters, or nautical miles).

6 September 2004 Aps_MapDistance 1

Aps_MapsAdd(3) aps API Reference Aps_MapsAdd(3)

NAME
Aps_MapsAdd − adds the given map into the internal hash table

SYNOPSIS
int Aps_MapsAdd (IMGMAP *imgmap, int clobber);

ARGUMENTS
imgmap IMAGEMAP structure

clobber set to 1 to remove any duplicate table

DESCRIPTION
Add the imgmap array to the internal hash tables. It deletes any previsously named imgmap.

RETURNS
APS_OK if successful; Otherwise, returns APS_ERROR.

6 September 2004 Aps_MapsAdd 1

Aps_MapsDebug(3) aps API Reference Aps_MapsDebug(3)

NAME
Aps_MapsDebug − write out hash table statistics

SYNOPSIS
void Aps_MapsDebug (FILE * fp, char *result);

ARGUMENTS
fp file pointer

result result string (currently not used)

DESCRIPTION
This routine writes out the hash table statistics to the given file pointer. This routine was modified to use
GLIB hash functions and therefore does not provide a statistics output.

6 September 2004 Aps_MapsDebug 1

Aps_MapsDelete(3) aps API Reference Aps_MapsDelete(3)

NAME
Aps_MapsDelete − remove named map from the internal hash table

SYNOPSIS
int Aps_MapsDelete (char *mapname);

ARGUMENTS
mapname name of map

DESCRIPTION
Deletes the map given in mapname form the internal hash table.

RETURNS
APS_OK if successful; Otherwise, returns APS_ERROR.

6 September 2004 Aps_MapsDelete 1

Aps_MapsExit(3) aps API Reference Aps_MapsExit(3)

NAME
Aps_MapsExit − closes Aps_MapsXXX interface

SYNOPSIS
void Aps_MapsExit (void);

ARGUMENTS
void no arguments

DESCRIPTION
This routine must be called to close down the Aps_MapsXXX interface. It handles clean up.

6 September 2004 Aps_MapsExit 1

Aps_MapsGetMap(3) aps API Reference Aps_MapsGetMap(3)

NAME
Aps_MapsGetMap − get IMGMAP structure

SYNOPSIS
IMGMAP * Aps_MapsGetMap (char *mapname);

ARGUMENTS
mapname name of map

DESCRIPTION
Find the IMGMAP that corresponds to given map name and return a copy of it.

RETURNS
An instance of IMGMAP

6 September 2004 Aps_MapsGetMap 1

Aps_MapsInit(3) aps API Reference Aps_MapsInit(3)

NAME
Aps_MapsInit − initialize Aps_Maps interface

SYNOPSIS
void Aps_MapsInit (void);

ARGUMENTS
void no arguments

DESCRIPTION
These set of routines are used to maintain a list of map projections. Routines are provided to initialize, add,
delete, list, set current, and load and save the list of a file.

Prior to using any of these routines, Map_Init must be called to set up the internal structures. Map_Exit is
used to clean up these structures.

To add a new map projection, use the Proj_Create routine to attain an IMGMAP structure and pass it to
Maps_Add. Maps_Add will add this map projection to its internal list and make it the current map projec-
tion. To remove a map projection, pass its name to Maps_Delete, which will remove the map projection.

To change to a new map, the Maps_UseMap procedure is called. To obtain the name of the current map
call Maps_Current and to get the IMGMAP structure of the current map issue a call to Maps_GetMap;
Note, do not access the IMGMAP directly. When the "maps.h" header is included Proj macros are avail-
able to access the structure fields.

To see the current list of maps uses Maps_List.

6 September 2004 Aps_MapsInit 1

Aps_MapsList(3) aps API Reference Aps_MapsList(3)

NAME
Aps_MapsList − list available maps

SYNOPSIS
int Aps_MapsList (FILE * fp, char *result);

ARGUMENTS
fp file pointer

result result string (currently not used)

DESCRIPTION
Write to file pointer the names of each map in the internal list

RETURNS
The hash table size.

6 September 2004 Aps_MapsList 1

Aps_MapsLoadFile(3) aps API Reference Aps_MapsLoadFile(3)

NAME
Aps_MapsLoadFile − load maps from an HDF file

SYNOPSIS
int Aps_MapsLoadFile (char * file, int *nmaps_read);

ARGUMENTS
file Name of maps file

nmaps_read Number of maps added to internal list

DESCRIPTION
Loads all maps in the given file into the current hash table of maps. The number added is returned in
nmaps_read.

RETURNS
APS_OK if successful; Otherwise, returns APS_ERROR.

6 September 2004 Aps_MapsLoadFile 1

Aps_MapsLoadFileID(3) aps API Reference Aps_MapsLoadFileID(3)

NAME
Aps_MapsLoadFileID − load maps from an HDF file

SYNOPSIS
int Aps_MapsLoadFileID (aps_t file_id , int *nmaps_read);

ARGUMENTS
file_id file id

nmaps_read Number of maps added to internal list

DESCRIPTION
Loads all maps in the given file into the current hash table of maps. The number added is returned in
nmaps_read.

RETURNS
APS_OK if successful; Otherwise, returns APS_ERROR.

6 September 2004 Aps_MapsLoadFileID 1

Aps_MapsPrint(3) aps API Reference Aps_MapsPrint(3)

NAME
Aps_MapsPrint − print out hash table stats

SYNOPSIS
int Aps_MapsPrint (IMGMAP *imgmap, FILE * fp);

ARGUMENTS
imgmap Image Map definition structure

fp Output file pointer

DESCRIPTION
Prints out statics about the internal hash table. Used to debug the Aps_Maps library.

RETURNS
APS_OK

6 September 2004 Aps_MapsPrint 1

Aps_MapsReadMap(3) aps API Reference Aps_MapsReadMap(3)

NAME
Aps_MapsReadMap − read an IMGMAP object from an HDF file

SYNOPSIS
IMGMAP * Aps_MapsReadMap (aps_t file_id , char *sds_name_idx, int opt);

ARGUMENTS
file_id file_id of HDF file, from Aps_FileOpen

sds_name_idx
name or index of ImgMap

opt BY_NAME or BY_INDEX

DESCRIPTION
Returns a pointer to the IMGMAP structure read from the HDF file using either the name or index of the
SDS containing the IMGMAP. If the SDS is not a valid IMGMAP structure or an error occurs reading the
SDS, a NULL pointer will be returned.

RETURNS
IMGMAP or NULL if failed to read IMGMAP

6 September 2004 Aps_MapsReadMap 1

Aps_MapsSaveFile(3) aps API Reference Aps_MapsSaveFile(3)

NAME
Aps_MapsSaveFile − save current maps to HDF file

SYNOPSIS
int Aps_MapsSaveFile (char * file);

ARGUMENTS
file output filename

DESCRIPTION
This routine writes the currently active Maps to the desired output file. The maps are written in HDF for-
mat. The output file must be a pre-existing HDF file or an new HDF file will be created.

RETURNS
APS_OK if successful; Otherwise, returns APS_ERROR.

6 September 2004 Aps_MapsSaveFile 1

Aps_MapsWriteMap(3) aps API Reference Aps_MapsWriteMap(3)

NAME
Aps_MapsWriteMap − write an IMGMAP object to an SDS object

SYNOPSIS
int Aps_MapsWriteMap (aps_t file_id , IMGMAP *imgmap);

ARGUMENTS
file_id file_id of HDF file, from Aps_FileOpen

imgmap IMGMAP structure to write to file

DESCRIPTION
Write imgmap to HDF file pointed to by file_id, adding approriate attributes.

RETURNS
APS_OK if successful; Otherwise, returns APS_ERROR.

6 September 2004 Aps_MapsWriteMap 1

Aps_Metrics(3) aps API Reference Aps_Metrics(3)

NAME
Aps_Metrics − set ranges for input data

SYNOPSIS
int Aps_Metrics (double value, double *validRange, double *dataRange, int *dataRangeSet, double
*actualRange, int *actualSet);

ARGUMENTS
value input test value

validRange input range used to test value against

dataRange min/max value of input value which falls within valid range

dataRangeSet flag set after first value falls within valid range

actualRange min/max value of all input values regardless of valid range

actualSet flag set after first call to function

DESCRIPTION
Aps_MetricsF is used to update the minimum and maximum range for the input value. The input value is
tested against the valid range and if it falls within those limits it is compared with the data range that has
been set so far. That is , the data range holds minimum and maximum range of all input data that falls
within the user specified valid range. The actual range is the minimum and maximum range of all input
data.

This routine is designed to be used in a loop in which a particular input value changes for each iteration.
This routine will then maintain a ‘‘running’’ heiristic of the input data. The arrays validRange, dataRange,
and actualRange as well as the flags must be global to the loop.

RETURNS
APS_OK.

6 September 2004 Aps_Metrics 1

Aps_MetricsF(3) aps API Reference Aps_MetricsF(3)

NAME
Aps_MetricsF − set ranges for input data

SYNOPSIS
int Aps_MetricsF (float value, float *validRange, float *dataRange, int *dataRangeSet, float *actual-
Range, int *actualSet);

ARGUMENTS
value input test value

validRange input range used to test value against

dataRange min/max value of input value which falls within valid range

dataRangeSet flag set after first value falls within valid range

actualRange min/max value of all input values regardless of valid range

actualSet flag set after first call to function

DESCRIPTION
Aps_MetricsF is used to update the minimum and maximum range for the input value. The input value is
tested against the valid range and if it falls within those limits it is compared with the data range that has
been set so far. That is, the data range holds minimum and maximum range of all input data that falls
within the user specified valid range. The actual range is the minimum and maximum range of all input
data.

This routine is designed to be used in a loop in which a particular input value changes for each iteration.
This routine will then maintain a ‘‘running’’ heiristic of the input data. The arrays validRange, dataRange,
and actualRange as well as the flags must be global to the loop.

RETURNS
APS_OK.

6 September 2004 Aps_MetricsF 1

Aps_MinMax(3) aps API Reference Aps_MinMax(3)

NAME
Aps_MinMax − find min/max of array of doubles

SYNOPSIS
void Aps_MinMax (double *a, int n, double *min, double *max);

ARGUMENTS
a input array

n number of elments in array

min minimum value in array

max maximum value in array

DESCRIPTION
Search through the first n elements of an array of type double and determine if the minimum and maximum
values contained it.

6 September 2004 Aps_MinMax 1

Aps_MinMaxF(3) aps API Reference Aps_MinMaxF(3)

NAME
Aps_MinMaxF − find min/max of array of floats

SYNOPSIS
void Aps_MinMaxF (float *a, int n, float *min, float *max);

ARGUMENTS
a input array

n number of elments in array

min minimum value in array

max maximum value in array

DESCRIPTION
Search through the first n elements of an array of type float and determine if the minimum and maximum
values contained it

6 September 2004 Aps_MinMaxF 1

Aps_MinMaxI(3) aps API Reference Aps_MinMaxI(3)

NAME
Aps_MinMaxI − find min/max of array of ints

SYNOPSIS
void Aps_MinMaxI (int *a, int n, int *min, int *max);

ARGUMENTS
a input array

n number of elments in array

min minimum value in array

max maximum value in array

DESCRIPTION
Search through the first n elements of an array of type int and determine if the minimum and maximum val-
ues contained it.

6 September 2004 Aps_MinMaxI 1

Aps_MinMaxUI(3) aps API Reference Aps_MinMaxUI(3)

NAME
Aps_MinMaxUI − find min/max of array of ints

SYNOPSIS
void Aps_MinMaxUI (unsigned int *a, unsigned int n, unsigned int *min, unsigned int *max);

ARGUMENTS
a input array

n number of elments in array

min minimum value in array

max maximum value in array

DESCRIPTION
Search through the first n elements of an array of type int and determine if the minimum and maximum val-
ues contained it.

6 September 2004 Aps_MinMaxUI 1

Aps_ModisEndTime(3) aps API Reference Aps_ModisEndTime(3)

NAME
Aps_ModisEndTime − return end time of MODIS file

SYNOPSIS
int Aps_ModisEndTime (int *year, int * jday, int *month, int *day, int *hour, int *min, int *sec, dou-
ble * fsec);

ARGUMENTS
year year

jday day of year

month month

day day

hour hour

min minute

sec second

fsec fraction of a second

DESCRIPTION
This routine examines the internal EOSObject created by a call to Aps_Parse_ECS_Metadata and returns
the end time based on that information.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ModisEndTime 1

Aps_ModisFileType(3) aps API Reference Aps_ModisFileType(3)

NAME
Aps_ModisFileType − return type of MODIS file

SYNOPSIS
int Aps_ModisFileType (char *type);

ARGUMENTS
type string to receive value (must be > 32 chars)

DESCRIPTION
This routine examines the internal EOSObject created by a call to Aps_Parse_ECS_Metadata and returns
the file type based on that information.

RETURNS
An integer indicating the file type, like APS_FT_NASA_L1B_1KM. See aps.h for full list.

6 September 2004 Aps_ModisFileType 1

Aps_ModisGetInfo(3) aps API Reference Aps_ModisGetInfo(3)

NAME
Aps_ModisGetInfo − return info about in MODIS file

SYNOPSIS
int Aps_ModisGetInfo (int32 file_id , int *numScans, int *numFrams);

ARGUMENTS
file_id HDF id of MODIS file

numScans number of scans

numFrams number of frames

DESCRIPTION
This routine examines the internal EOSObject created by a call to Aps_Parse_ECS_Metadata and returns
the platform of the MODIS file. The value returned will be one of MODIS_TERRA, MODIS_AQUA, or
MODIS_UNKNOWN

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ModisGetInfo 1

Aps_ModisPGEVersion(3) aps API Reference Aps_ModisPGEVersion(3)

NAME
Aps_ModisPGEVersion − return PGE Version of MODIS file

SYNOPSIS
int Aps_ModisPGEVersion (int *major, int *minor, int *micro);

ARGUMENTS
major major part of PGE Version of MODIS file

minor minor part of PGE Version of MODIS file

micro micro part of PGE Version of MODIS file

DESCRIPTION
This routine examines the internal EOSObject created by a call to Aps_Parse_ECS_Metadata and returns
the platform of the MODIS file. The value returned will be one of MODIS_TERRA, MODIS_AQUA, or
MODIS_UNKNOWN

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ModisPGEVersion 1

Aps_ModisPlatform(3) aps API Reference Aps_ModisPlatform(3)

NAME
Aps_ModisPlatform − return platform of MODIS file

SYNOPSIS
int Aps_ModisPlatform (int *platform);

ARGUMENTS
platform platform of MODIS file

DESCRIPTION
This routine examines the internal EOSObject created by a call to Aps_Parse_ECS_Metadata and returns
the platform of the MODIS file. The value returned will be one of MODIS_TERRA, MODIS_AQUA, or
MODIS_UNKNOWN

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ModisPlatform 1

Aps_ModisStartTime(3) aps API Reference Aps_ModisStartTime(3)

NAME
Aps_ModisStartTime − return start time of MODIS file

SYNOPSIS
int Aps_ModisStartTime (int *year, int * jday, int *month, int *day, int *hour, int *min, int *sec, dou-
ble * fsec);

ARGUMENTS
year year

jday day of year

month month

day day

hour hour

min minute

sec second

fsec fraction of a second

DESCRIPTION
This routine examines the internal EOSObject created by a call to Aps_Parse_ECS_Metadata and returns
the start time based on that information.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ModisStartTime 1

Aps_NSIPSGetComment(3) aps API Reference Aps_NSIPSGetComment(3)

NAME
Aps_NSIPSGetComment − get comment field

SYNOPSIS
void Aps_NSIPSGetComment (nsips_hd hd , int field , char *comment);

ARGUMENTS
hd NSIP header structure

field Field Number

comment Starting pixel of data in image

DESCRIPTION
Gets the desired comment field from NSIPS header hd.

6 September 2004 Aps_NSIPSGetComment 1

Aps_NSIPSGetInfo(3) aps API Reference Aps_NSIPSGetInfo(3)

NAME
Aps_NSIPSGetInfo − retrieve file information from header (nsips_hdtructure)

SYNOPSIS
void Aps_NSIPSGetInfo (nsips_hd hd , int *pixels, int *lines, int *bands, int *type);

ARGUMENTS
hd SeaPAK header structure

pixels Number of pixels across image

lines Number of lines across image

bands Number of bands in image

type Data type of image

DESCRIPTION
Gets file information from header hd.

6 September 2004 Aps_NSIPSGetInfo 1

Aps_NSIPSGetProj(3) aps API Reference Aps_NSIPSGetProj(3)

NAME
Aps_NSIPSGetProj − get projection information

SYNOPSIS
void Aps_NSIPSGetProj (nsips_hd hd , int *proj, int *gridx, int *gridy, int *ellip, int *zone, double
*NWLat, double *NWLon, double *DPLat, double *DPLon, double *trueLat, double *trueLon);

ARGUMENTS
hd NSIP header structure

proj projection code

gridx grid x size

gridy grid y size

ellip ellipse

zone UTM zone

NWLat North-West latitude

NWLon North-West longitude

DPLat degrees per pixel (latitude)

DPLon degrees per pixel (longitude)

trueLat true latitude

trueLon true longitude

DESCRIPTION
Gets NSIPS projection information from header hd.

6 September 2004 Aps_NSIPSGetProj 1

Aps_NSIPSGetProjData(3) aps API Reference Aps_NSIPSGetProjData(3)

NAME
Aps_NSIPSGetProjData − get projection data information

SYNOPSIS
void Aps_NSIPSGetProjData (nsips_hd hd , double *baseLat, double *baseLon, double * falseEast,
double * falseNorth, double *misc, double *XMin, double *XMax, double *YMin, double *YMax, dou-
ble *minLat, double *maxLat, double *minLon, double *maxLon);

ARGUMENTS
hd NSIP header structure

baseLat base latitude

baseLon base longitude

falseEast grid y size

falseNorth ellipse

misc misc data

XMin X minimum

XMax X maximum

YMin Y minimum

YMax Y maximum

minLat minimum latitude

maxLat maximum latitude

minLon minimum longitude

maxLon maximum longitude

DESCRIPTION
Gets NSIPS projection data information from header hd.

6 September 2004 Aps_NSIPSGetProjData 1

Aps_NSIPSSetComment(3) aps API Reference Aps_NSIPSSetComment(3)

NAME
Aps_NSIPSSetComment − set comment field

SYNOPSIS
void Aps_NSIPSSetComment (nsips_hd *hd , int field , char *comment);

ARGUMENTS
hd NSIP header structure

field Field Number

comment Starting pixel of data in image

DESCRIPTION
Sets one of the two comment fields into header hd. Only the first 25 pixels are copied.

6 September 2004 Aps_NSIPSSetComment 1

Aps_NSIPSSetInfo(3) aps API Reference Aps_NSIPSSetInfo(3)

NAME
Aps_NSIPSSetInfo − store file information into header

SYNOPSIS
void Aps_NSIPSSetInfo (nsips_hd *hd , int pixels, int lines, int bands, int type);

ARGUMENTS
hd SeaPAK header structure

pixels Number of pixels across image

lines Number of lines across image

bands Number of bands in image

type Data type of image

DESCRIPTION
Sets file information in header hd.

6 September 2004 Aps_NSIPSSetInfo 1

Aps_NSIPSSetProj(3) aps API Reference Aps_NSIPSSetProj(3)

NAME
Aps_NSIPSSetProj − set projection information

SYNOPSIS
void Aps_NSIPSSetProj (nsips_hd *hd , int proj, int gridx, int gridy, int ellip, int zone, double NWLat,
double NWLon, double DPLat, double DPLon, double trueLat, double trueLon);

ARGUMENTS
hd NSIP header structure

proj projection code

gridx grid x size

gridy grid y size

ellip ellipse

zone UTM zone

NWLat North-West latitude

NWLon North-West longitude

DPLat degrees per pixel (latitude)

DPLon degrees per pixel (longitude)

trueLat true latitude

trueLon true longitude

DESCRIPTION
Sets NSIPS projections information into header hd.

6 September 2004 Aps_NSIPSSetProj 1

Aps_NavInit(3) aps API Reference Aps_NavInit(3)

NAME
Aps_NavInit − initialize the navigation from a given file

SYNOPSIS
NAV * Aps_NavInit (char * file);

ARGUMENTS
file filename containing maps

DESCRIPTION
Given an HDF file, Aps_NavInit opens the file using Aps_FileOpen and looks for the attribute "mapProjec-
tion". If found, it then uses the name given in that attribute to read in the projection information. Currently
it is considered an error if more than one IMGMAP SDS is defined in the file. If the IMGMAP SDS is suc-
cesfully read, then the Aps_ProjInit routine is called to initialize the USGC map projection software. The
nav_type field in the NAV structure is set to NAV_MAPPED and the nav structure is returned.

If the attribute "mapProjection" did not exist, then Aps_NavInit executes the routine Aps_ReadGrid to
read in the grid control point data. If successfully read in, a call to Aps_GridInit is made. The nav_type
field in the NAV structure is set to NAV_GCP and the nav structure is returned.

If neither the NAV_MAPPED or NAV_GCP types of navigation fails, a NULL is returned.

RETURNS
A pointer to the NAV structure or NULL if an error occurs

6 September 2004 Aps_NavInit 1

Aps_NavInitFromMapFile(3) aps API Reference Aps_NavInitFromMapFile(3)

NAME
Aps_NavInitFromMapFile − initialize the navigation from a given file and SDS

SYNOPSIS
NAV * Aps_NavInitFromMapFile (char *mapFile, char *mapName);

ARGUMENTS
mapFile filename containing maps

mapName name of selected map

DESCRIPTION
Loads in the maps from the file given in mapFile, retrieves the map information for the given map (map-
Name), and calls Aps_ProjInit with that information to initialize the navigation system.

RETURNS
An allocated NAV structure, or NULL if error occurs.

6 September 2004 Aps_NavInitFromMapFile 1

Aps_NavInitID(3) aps API Reference Aps_NavInitID(3)

NAME
Aps_NavInitID − initialize the navigation from file ID

SYNOPSIS
NAV * Aps_NavInitID (aps_t file_id);

ARGUMENTS
file_id filename containing maps

DESCRIPTION
Given an HDF file, Aps_NavInit opens the file using Aps_FileOpen and looks for the attribute "mapProjec-
tion". If found, it then uses the name given in that attribute to read in the projection information. Currently
it is considered an error if more than one IMGMAP SDS is defined in the file. If the IMGMAP SDS is suc-
cesfully read, then the Aps_ProjInit routine is called to initialize the USGC map projection software. The
nav_type field in the NAV structure is set to NAV_MAPPED and the nav structure is returned.

If the attribute "mapProjection" did not exist, then Aps_NavInit executes the routine Aps_ReadGrid to
read in the grid control point data. If successfully read in, a call to Aps_GridInit is made. The nav_type
field in the NAV structure is set to NAV_GCP and the nav structure is returned.

If neither the NAV_MAPPED or NAV_GCP types of navigation fails, a NULL is returned.

RETURNS
A pointer to the NAV structure or NULL if an error occurs

6 September 2004 Aps_NavInitID 1

Aps_OpenNSIPS(3) aps API Reference Aps_OpenNSIPS(3)

NAME
Aps_OpenNSIPS − open a NSIPS file

SYNOPSIS
apsNSIPSFile* Aps_OpenNSIPS (const char * file, const char *access);

ARGUMENTS
file name of NSIPS file to be opened

access type of access

DESCRIPTION
This function opens an NSIPS image file and returns an apsNSIPSFile pointer. The access field is a charac-
ter string like that used in fopen.

RETURNS
A apsNSIPSFile pointer if file opened; otherwiser returns NULL.

6 September 2004 Aps_OpenNSIPS 1

Aps_OpenSPK(3) aps API Reference Aps_OpenSPK(3)

NAME
Aps_OpenSPK − open a SPK file

SYNOPSIS
apsSPKFile* Aps_OpenSPK (const char * file, const char *access);

ARGUMENTS
file name of SEAPAK file to be opened

access type of access

DESCRIPTION
This function opens an NRL modified PC-SEAPAK file. It returns an apsSPKFile pointer. The access field
is a character string like that used in fopen.

RETURNS
apsSPKFile pointer if file opened; otherwiser returns NULL.

6 September 2004 Aps_OpenSPK 1

Aps_Parse_ECS_Metadata(3) aps API Reference Aps_Parse_ECS_Metadata(3)

NAME
Aps_Parse_ECS_Metadata − parses ECS metadata

SYNOPSIS
int Aps_Parse_ECS_Metadata (char *str);

ARGUMENTS
str string containing metadata to parse

DESCRIPTION
This routine parses an ECS metadata string used by MODIS. The string is stored in an HDF Global
Attributed called "CoreMetaData.0". The user is responsible for reading this attribute (its a string). When
passed to this function, it is parsed and its values are stored in an internal structure. To attain the informa-
tion, use the other routines provided, like Aps_ModisFileType, Aps_ModisStartTime, etc.

RETURNS
APS_OK

6 September 2004 Aps_Parse_ECS_Metadata 1

Aps_PlotDualAxis(3) aps API Reference Aps_PlotDualAxis(3)

NAME
Aps_PlotDualAxis − plot dual yaxis

SYNOPSIS
int Aps_PlotDualAxis (char * file, double xmin, double xmax, double xtick, double *ymin, double
*ymax, double *ytick, char *title, char *xtitle, char * *ytitle, int *dash, int nx, int ny, int *yaxis, dou-
ble *xdata, double **ydata);

ARGUMENTS
file output file

xmin minimum x value

xmax maximum x value

xtick where to put the x tick marks

ymin minimum y value

ymax maximum y value

ytick where to put the y tick marks

title overall title of plot

xtitle x-axis title

ytitle y-axis title

dash type

nx length of spectra

ny number of spectra

yaxis which y-axis to use (0 or 1)

xdata data containing wav elength values (x-axis)

ydata spectra data

DESCRIPTION
Creates a simple PostScript plot of wav elength vs

6 September 2004 Aps_PlotDualAxis 1

Aps_PlotSimple(3) aps API Reference Aps_PlotSimple(3)

NAME
Aps_PlotSimple − create simple plot

SYNOPSIS
int Aps_PlotSimple (char * file, double xmin, double xmax, double xtick, double ymin, double ymax,
double ytick, char *title, char *xtitle, char *ytitle, int * *colors, int *dash, int nx, int ny, double *xdata,
double **ydata);

ARGUMENTS
file output file

xmin minimum x value

xmax maximum x value

xtick where to put the x tick marks

ymin minimum y value

ymax maximum y value

ytick where to put the y tick marks

title overall title of plot

xtitle x-axis title

ytitle y-axis title

colors colors for each spectra [ny][3]

dash dash type for each spectra [ny]

nx length of x-data and y-data arrays

ny number of y-data

xdata x-data

ydata y-data

DESCRIPTION
Creates an Encapsulated PostScript file containing a plot of x-data and y-data. Multiple y-data values can
be plotted.

6 September 2004 Aps_PlotSimple 1

Aps_PointInPolygon(3) aps API Reference Aps_PointInPolygon(3)

NAME
Aps_PointInPolygon − determine if point is within a polygon

SYNOPSIS
int Aps_PointInPolygon (int npol, double *xp, double *yp, double x, double y);

ARGUMENTS
npol number of points in polygon

xp polygon x coordinates

yp polygon y coordinates

x test points x coordinate

y test points y coordinate

DESCRIPTION
Returns 0 if point is NOT within a polygon; 1 if it is

CREDITS
The code was based on pnpoly given in the USENET FAQ for comp.graphics.algorithms maintained by
Joseph O’ Rourke of Smith College, Northhampton, MA, USA. This routine was based on code from Wm.
Randolph Franklin.

6 September 2004 Aps_PointInPolygon 1

Aps_PointInPolygonI(3) aps API Reference Aps_PointInPolygonI(3)

NAME
Aps_PointInPolygonI − determine if point is within a polygon

SYNOPSIS
int Aps_PointInPolygonI (int npol, int *xp, int *yp, int x, int y);

ARGUMENTS
npol number of points in polygon

xp polygon x coordinates

yp polygon y coordinates

x test points x coordinate

y test points y coordinate

DESCRIPTION
See APS_PointInPolygon

6 September 2004 Aps_PointInPolygonI 1

Aps_PointInQuad(3) aps API Reference Aps_PointInQuad(3)

NAME
Aps_PointInQuad − determine if point b within a quadralateral

SYNOPSIS
int Aps_PointInQuad (double x, double y, double *xp, double *yp);

ARGUMENTS
x test points x coordinate

y test points y coordinate

xp polygon x coordinates

yp polygon y coordinates

DESCRIPTION
Returns 1 if point is in quad, 0 if not.

6 September 2004 Aps_PointInQuad 1

Aps_PointInQuadI(3) aps API Reference Aps_PointInQuadI(3)

NAME
Aps_PointInQuadI − determine if point b within a quadralateral

SYNOPSIS
int Aps_PointInQuadI (int x, int y, int *xp, int *yp);

ARGUMENTS
x test points x coordinate

y test points y coordinate

xp polygon x coordinates

yp polygon y coordinates

DESCRIPTION
Returns 1 if point is in quad, 0 if not.

6 September 2004 Aps_PointInQuadI 1

Aps_PointInQuadUI(3) aps API Reference Aps_PointInQuadUI(3)

NAME
Aps_PointInQuadUI − determine if point b within a quadralateral

SYNOPSIS
int Aps_PointInQuadUI (unsigned int x, unsigned int y, unsigned int *xp, unsigned int *yp);

ARGUMENTS
x test points x coordinate

y test points y coordinate

xp polygon x coordinates

yp polygon y coordinates

DESCRIPTION
Returns 1 if point is in quad, 0 if not.

6 September 2004 Aps_PointInQuadUI 1

Aps_ProdWriteAllGeo(3) aps API Reference Aps_ProdWriteAllGeo(3)

NAME
Aps_ProdWriteAllGeo − write a geophysical product SDS to APS file

SYNOPSIS
int Aps_ProdWriteAllGeo (char * filename, PROD_obj prod , double *data);

ARGUMENTS
filename file to write product to

prod pointer to PROD_obj structure to create

data geophysical data to write

DESCRIPTION
This function takes a PROD_obj and creates the Scientific Data Set. It also appends all the required
attributes for an APS SDS. If it fails to create the product the field "output" of the PROD_obj will be set to
zero. That is, prod.output = 0;

RETURNS
APS_OK

6 September 2004 Aps_ProdWriteAllGeo 1

Aps_Profile(3) aps API Reference Aps_Profile(3)

NAME
Aps_Profile − dump debugging information about APS file access

SYNOPSIS
void Aps_Profile (void);

ARGUMENTS
void no arguments

DESCRIPTION
Writes to stderr debugging information about the number of calls to HDF routines.

6 September 2004 Aps_Profile 1

Aps_Proj(3) aps API Reference Aps_Proj(3)

NAME
Aps_Proj − project points using current projection

SYNOPSIS
int Aps_Proj (NAV *nav, double *pix, double *lin, double *lon, double *lat, int *onoff , int mode, int
num);

ARGUMENTS
nav navigation pointer

pix pixel location in image (x-direction East-West)

lin line location in image (y-direction North-South)

lon longitude location in image

lat latitude location in image

onoff flag is point is on/off image

mode convert TO_LL or TO_XY

num number of points in arrays

DESCRIPTION
Given a series of pixel/line image locations or lonitudes/latitudes, Aps_Proj will convert pixel/line to lon/lat
or vice versa, depending on the mode (TO_LL or TO_XY). A corresponding array retains a flag indicating
whether the point is on or off the map.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise.

6 September 2004 Aps_Proj 1

Aps_ProjCreate(3) aps API Reference Aps_ProjCreate(3)

NAME
Aps_ProjCreate − create a map projection

SYNOPSIS
IMGMAP * Aps_ProjCreate (char *map_name, char *lname, char *code, int type, int proj, int zone,
int datum, double *param, double width, double height, double lon1, double lat1, double pix1, double
lin1, double lon2, double lat2, double delta, double aspect);

ARGUMENTS
map_name name of map projection

lname name of map projection

code name of map projection

type system type (USGS’s GCTP, NRL’s NSIPS, etc.) currently MUST equal
USGS_PROJ_SYSTEM

proj USGS projection code

zone USGS UTM zone

datum USGS selected spheroid

param USGS projection parameters

width width of output image window (pixels)

height height of output image window (pixels)

lon1 longitude of first anchor point

lat1 latitude of first anchor point

pix1 pixel in output image of first anchor point

lin1 line in output image of first anchor point

lon2 longitude of second anchor point

lat2 latitude of second anchor point

delta horizontal (if +) or vertical (if -) distance between first and second anchor points in the out-
put image window (pixels)

aspect aspect ratio of output image window

DESCRIPTION
Before using the projection system, a map projection must be defined. To accomplish this two functions
are provided. First, use Proj_Create to return a pointer to a structure containing the projection informa-
tion. The validity of this map projection is not checked. This routine only allocates the required space for
the IMGMAP structure and hides its layout. The user should not access or modify the IMGMAP structure.
This will allow the projection system to be easily updated. Since the IMGMAP structure is allocated inter-
nally by Proj_Create, the user must call Proj_Free when destroying an instance of this structure. See sec-
tion on MAP DEFINITION in maps (1) for more information.

RETURNS
An allocated IMGMAP structure, or NULL if error occurs.

6 September 2004 Aps_ProjCreate 1

Aps_ProjDump(3) aps API Reference Aps_ProjDump(3)

NAME
Aps_ProjDump − dump projection information to file

SYNOPSIS
void Aps_ProjDump (PROJ *proj, FILE * fp);

ARGUMENTS
proj projection

fp file pointer

DESCRIPTION
Write a text message about the projection to the file pointer.

6 September 2004 Aps_ProjDump 1

Aps_ProjError(3) aps API Reference Aps_ProjError(3)

NAME
Aps_ProjError − get last Aps_ProjXXX error

SYNOPSIS
int Aps_ProjError (void);

ARGUMENTS
void no arguments

DESCRIPTION
This function will return the last error set by the Aps_ProjXXX routines.

RETURNS
An error number.

6 September 2004 Aps_ProjError 1

Aps_ProjInit(3) aps API Reference Aps_ProjInit(3)

NAME
Aps_ProjInit − set IMGMAP to new projection

SYNOPSIS
PROJ * Aps_ProjInit (IMGMAP *imgmap);

ARGUMENTS
imgmap structure for manipulation of projection

DESCRIPTION
Secondly, pass this structure to the Proj_Set function. This function validates the projection and sets up
some internal structures to allow the user to call Proj. If the projection is invalid, a number greater than 0
is returned indicating the reason. See DIAGNOSITICS below. To clear the map projections current state,
use the Proj_UnSet routine. After this call, the Proj routines will be unstable.

RETURNS
A pointer to an allocated PROJ structure or NULL, if error occurs.

6 September 2004 Aps_ProjInit 1

Aps_ProjSlopeInt(3) aps API Reference Aps_ProjSlopeInt(3)

NAME
Aps_ProjSlopeInt − return name of current projection

SYNOPSIS
void Aps_ProjSlopeInt (PROJ *proj, double *lineSlope, double *pixelSlope, double *lineInt, double
*pixelInt);

ARGUMENTS
proj projection

lineSlope slope for lines

pixelSlope slope for pixels

lineInt intercept for lines

pixelInt intercept for pixels

DESCRIPTION
Gets the computed slope/intercept for lines/pixels to convert map coordinates to image coordinates.

6 September 2004 Aps_ProjSlopeInt 1

Aps_Prompt(3) aps API Reference Aps_Prompt(3)

NAME
Aps_Prompt − prompt user and return answer (as string)

SYNOPSIS
int Aps_Prompt (const char *prompt, char *result, int prompt_len, char *deflt);

ARGUMENTS
prompt prompt string

result char arrary to hold result

prompt_len size of result array

deflt a default string

DESCRIPTION
Write prompt string with deflt in brackets to stdout and get the user’s reply, which is returned in result. The
prompt_len is used for setting the location of the ’?’ prompt and used for lining up prompts.

RETURNS
APS_OK

6 September 2004 Aps_Prompt 1

Aps_PutValueDouble(3) aps API Reference Aps_PutValueDouble(3)

NAME
Aps_PutValueDouble − output a double into the buffer stream

SYNOPSIS
double Aps_PutValueDouble (char *ptr, double val, size_t offset, int num, int endian);

ARGUMENTS
ptr pointer to output buffer stream

val value to be inserted into buffer stream

offset offset of double in buffer stream

num number of bytes of int in buffer stream

endian endianess of int in buffer stream

DESCRIPTION
Given a ptr and an offset to a buffer stream, this routine will write a double value * to the buffer stream.
The number of bytes in the output stream to hold the double value must be either 4 or 8. The byte order of
the buffer stream is set by the argument endian. This should be set to APS_LITTLE_ENDIAN or
APS_BIG_ENDIAN.

RETURNS
The parameter val.

6 September 2004 Aps_PutValueDouble 1

Aps_PutValueInt(3) aps API Reference Aps_PutValueInt(3)

NAME
Aps_PutValueInt − output an int into the buffer stream

SYNOPSIS
int Aps_PutValueInt (char *ptr, int val, size_t offset, int num, int endian);

ARGUMENTS
ptr pointer to output buffer stream

val value to be inserted into buffer stream

offset offset of location of int in buffer stream

num number of bytes of int in buffer stream

endian endianess of int in buffer stream

DESCRIPTION
Given a ptr and an offset to a buffer stream, this routine will write an int value to the buffer stream. The
number of bytes in the output stream to hold the int value must be either 1, 2, or 4. The byte order of the
buffer stream is set by the argument endian. This should be set to APS_LITTLE_ENDIAN or
APS_BIG_ENDIAN.

RETURNS
The parameter val.

6 September 2004 Aps_PutValueInt 1

Aps_ReadData(3) aps API Reference Aps_ReadData(3)

NAME
Aps_ReadData − read geophysical data to SDS

SYNOPSIS
int Aps_ReadData (SDS_obj sds, int32 *start, int32 *stride, int32 *edge, void *buf);

ARGUMENTS
sds pointer to SDS_obj structure

start array of start index for each dimension

stride array of stride’s for each dimension maybe NULL for no subsampling

edge array of edge indices for each dimension

buf output buffer (MODIFIED by function)

DESCRIPTION
This API covers the HDF routine SDreaddata.

NOTE
The array pointed to be ’buf ’ is modified by this routine.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ReadData 1

Aps_ReadGeoData(3) aps API Reference Aps_ReadGeoData(3)

NAME
Aps_ReadGeoData − read geophysical data from SDS

SYNOPSIS
int Aps_ReadGeoData (double *buf , int32 *start, int32 *stride, int32 *edge, SDS_obj sds);

ARGUMENTS
buf input buffer

start array of start index for each dimension

stride array of stride’s for each dimension maybe NULL for no subsampling

edge array of edge indices for each dimension

sds pointer to SDS_obj structure

DESCRIPTION
This API emulates the HDF routine SDreaddata. This routine, however, will call Aps_GetDataCalibration
and automatically convert the data from counts to geophsical values.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ReadGeoData 1

Aps_ReadGeofData(3) aps API Reference Aps_ReadGeofData(3)

NAME
Aps_ReadGeofData − read geophysical data from SDS

SYNOPSIS
int Aps_ReadGeofData (float *buf , int32 *start, int32 *stride, int32 *edge, SDS_obj sds);

ARGUMENTS
buf input buffer

start array of start index for each dimension

stride array of stride’s for each dimension maybe NULL for no subsampling

edge array of edge indices for each dimension

sds pointer to SDS_obj structure

DESCRIPTION
This API emulates the HDF routine SDreaddata. This routine, however, will call Aps_GetDataCalibration
and automatically convert the data from counts to geophsical values.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ReadGeofData 1

Aps_ReadGrid(3) aps API Reference Aps_ReadGrid(3)

NAME
Aps_ReadGrid − read control point grid

SYNOPSIS
int Aps_ReadGrid (GCP_Grid *ctl, GCP_Grid_Read ictl);

ARGUMENTS
ctl GCP grid structure

ictl GCP grid structure

DESCRIPTION
Read a GCP_Grid structure from a file. First, it is assumed that the input file is an HDF file containing the
variables defined by Aps_WriteGrid. If this fails to read properly, an ASCII read is attempted. This ASCII
file should be in the same format as produced by Aps_WriteGrid for ASCII file output.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_ReadGrid 1

Aps_ReadNSIPSData(3) aps API Reference Aps_ReadNSIPSData(3)

NAME
Aps_ReadNSIPSData − read data from an NSIPS file

SYNOPSIS
size_t Aps_ReadNSIPSData (void *buf , size_t nitems, nsips_hd hd , apsNSIPSFile * fp);

ARGUMENTS
buf output buffer

nitems number of items to read

hd NSIPS header structure

fp NSIPS file pointer

DESCRIPTION
This function will read nitems from an NSIPS file. It will automatically correct for endianess and data size.
The user is responsible for allocating the correct number of bytes for buf.

RETURNS
The number of items read.

6 September 2004 Aps_ReadNSIPSData 1

Aps_ReadNSIPSHeader(3) aps API Reference Aps_ReadNSIPSHeader(3)

NAME
Aps_ReadNSIPSHeader − read header from NSIPS file

SYNOPSIS
int Aps_ReadNSIPSHeader (nsips_hd *hd , const char * filename, apsNSIPSFile * fp);

ARGUMENTS
hd NSIPS header structure

filename name of output file or NULL, if using fp

fp NSIPS file pointer

DESCRIPTION
Aps_ReadNSIPSHeader will return an NSIPS header structure which has been read from a file. The file
can be specified either by filename or a file pointer.

If the filename is non-NULL, it is used. The file will be opened for binary read access and closed when the
function returns. The file can be read, if it was compressed, provided that option was compiled in.

If the filename is NULL, then the file pointer is used. In this case, the file pointer to moved to the start of
the file, the header read and decoded and the file pointer returned. Thus, this function tries to be none
destructive on an passed file pointer.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_ReadNSIPSHeader 1

Aps_ReadSPKData(3) aps API Reference Aps_ReadSPKData(3)

NAME
Aps_ReadSPKData − read data from an SPK file

SYNOPSIS
size_t Aps_ReadSPKData (void *buf , size_t nitems, spk_hd hd , apsSPKFile * fp);

ARGUMENTS
buf input buffer stream

nitems number of items to read

hd SPK header structure

fp input SPK file pointer

DESCRIPTION
This function will read nitems from an SPK file. It will automatically correct for endianess and data size.
The user is responsible for allocating the correct number of bytes for buf.

RETURNS
The number of items read.

6 September 2004 Aps_ReadSPKData 1

Aps_ReadSPKGeoData(3) aps API Reference Aps_ReadSPKGeoData(3)

NAME
Aps_ReadSPKGeoData − read geophysical data from a SPK file

SYNOPSIS
size_t Aps_ReadSPKGeoData (double *buf , size_t nitems, spk_hd hd , apsSPKFile * fp);

ARGUMENTS
buf input double buffer

nitems number of items to read

hd SPK file pointer

fp input SPK file pointer

DESCRIPTION
This routine reads n items of data from the SeaPak file and automatically converts the data to geophysical
values which are returned in buf as doubles. The header is checked for data calibration information. This
information is applied to the buffer stream once n items have been read from the input file.

RETURNS
The number of items read.

6 September 2004 Aps_ReadSPKGeoData 1

Aps_ReadSPKHeader(3) aps API Reference Aps_ReadSPKHeader(3)

NAME
Aps_ReadSPKHeader − read header from SPK file

SYNOPSIS
int Aps_ReadSPKHeader (spk_hd *hd , char * filename, apsSPKFile * fp);

ARGUMENTS
hd SPK header structure to be read into

filename input file name or NULL

fp input SPK file pointer

DESCRIPTION
Aps_ReadSPKHeader will return an SPK header structure which has been read from a file. The file can
be specified either by filename or a file pointer.

If the filename is non-NULL, it is used. The file will be opened for binary read access and closed when the
function returns. The file can be read, if it was compressed, provided that option was compiled in.

If the filename is NULL, then the file pointer is used. In this case, the file pointer is moved to the start of
the file, the header read and decoded, and the file pointer returned. Thus, this function tries to be none
destructive when passed a file pointer.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_ReadSPKHeader 1

Aps_SDSClose(3) aps API Reference Aps_SDSClose(3)

NAME
Aps_SDSClose − close SDS structure

SYNOPSIS
int Aps_SDSClose (SDS_obj *sds);

ARGUMENTS
sds pointer to SDS_obj structure

DESCRIPTION
This routine calls HDF routines to end access to the SDS object pointed to by SDS_obj, which should be
obtained from the call to Aps_SDSOpen. It also frees the memory assocated with the SDS_obj.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSClose 1

Aps_SDSCopy(3) aps API Reference Aps_SDSCopy(3)

NAME
Aps_SDSCopy − copy SDS from one file to another

SYNOPSIS
int Aps_SDSCopy (int32 sd_in, int32 sd_out, char *sdsIn, char *sdsOut, int opt, int attrFlag);

ARGUMENTS
sd_in input ID (file ID or SDS ID)

sd_out output ID (file ID or SDS ID)

sdsIn name or Index of SDS from input file

sdsOut name of SDS for output file, NULL = do not rename

opt BY_NAME or BY_INDEX

attrFlag copy attributes? 0 = NO, 1 = Yes

DESCRIPTION
Aps_SDSCopy is used to copy an SDS array from one HDF to another.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSCopy 1

Aps_SDSCreate(3) aps API Reference Aps_SDSCreate(3)

NAME
Aps_SDSCreate − create an SDS

SYNOPSIS
int32 Aps_SDSCreate (aps_t file_id , char *name, int32 nt, int32 rank, int32 *dims);

ARGUMENTS
file_id file id returned by SDstart

name name of SDS

nt number Type of SDS

rank number of dimensions of SDS

dims array of dimension lengths of SDS

DESCRIPTION
Aps_CreateSDS is an interface to the HDF routine SDcreate. It automatically appends some attributes to
the SDS created including "createTime", "createSoftware", "createUser", "createPlatform";

RETURNS
The SDS ID.

6 September 2004 Aps_SDSCreate 1

Aps_SDSFind(3) aps API Reference Aps_SDSFind(3)

NAME
Aps_SDSFind − search HDF file for all SDSs matching regular expression

SYNOPSIS
int Aps_SDSFind (aps_t file_id , char **argv, int argc, char ***names, int *numFound);

ARGUMENTS
file_id file id returned from SDstart

argv regular expressions to search for SDS’s

argc number of regular expressions in argv

names string array of all SDS’s satisfying RE

numFound number of SDS’s statisfying RE

DESCRIPTION
Aps_SDSFind searches through a previously opened HDF file looking for all SDSs that match a regular
expression. Since dimensions records are also stored as SDSs, these are filtered out by this routine using
SDiscoordvar.

NOTE
names is an array of string arrays allocated using g_malloc. To free this memory, be sure to free the mem-
ory allocated for each string also.

for (i=0; i < numFound; i++)
g_free(names[i];

g_free(names);

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSFind 1

Aps_SDSGet(3) aps API Reference Aps_SDSGet(3)

NAME
Aps_SDSGet − get an SDS from a file

SYNOPSIS
int Aps_SDSGet (aps_t file_id , char *name_or_index, SDS_obj **sdsPtr, void **dataPtrPtr, int opt);

ARGUMENTS
file_id ID returned by SDstart call

name_or_index
name or index of SDS to open

sdsPtr pointer to SDS_obj structure

dataPtrPtr pointer to location to write data

opt BY_NAME or BY_INDEX

DESCRIPTION
Aps_SDSGet encapsulates Aps_SDSOpen, Aps_SDSReadAll, and Aps_SDSClose for reading in an entire
SDS array.

First argument should be a SD id returned from a call to SDstart or Aps_FileOpen.

The second argument should be either a string for the named SDS or an index number. Set opt to
BY_NAME if this argument is a name or BY_INDEX if this argument is an int32 number.

The third argument is an SDS_obj structure. This structure provides the user with the "meta" data for the
SDS array. These include (by not limited to) size, data type, attributes. If non-null, the user must call
Aps_SDSClose when finished using the "object". If the user is not interested in these, a NULL should be
passed.

The fourth argument is an pointer to a pointer and will hold the data. If the type is unknown apriori, the
user should get the SDS_obj as that information is there. This argument should be initialized to NULL.
The memory will be automatically allocated.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSGet 1

Aps_SDSGetGeo(3) aps API Reference Aps_SDSGetGeo(3)

NAME
Aps_SDSGetGeo − get an SDS geophyiscal product from a file

SYNOPSIS
int Aps_SDSGetGeo (aps_t file_id , char *name_or_index, SDS_obj *sdsPtr, void **dataPtrPtr, int
opt);

ARGUMENTS
file_id ID returned by SDstart call

name_or_index
name or index of SDS to open

sdsPtr pointer to SDS_obj structure

dataPtrPtr pointer to location to write data

opt BY_NAME or BY_INDEX

DESCRIPTION
Aps_SDSGet encapsulates Aps_SDSOpen, Aps_SDSReadAll, and Aps_SDSClose for reading in an entire
SDS array.

First argument should be a SD id returned from a call to SDstart or Aps_FileOpen.

The second argument should be either a string for the named SDS or an index number. Set opt to
BY_NAME if this argument is a name or BY_INDEX if this argument is an int32 number.

The third argument is an SDS_obj structure. This structure provides the user with the "meta" data for the
SDS array. These include (by not limited to) size, data type, attributes. If non-null, the user must call
Aps_SDSClose when finished using the "object". If the user is not interested in these, a NULL should be
passed.

The fourth argument is an pointer to a pointer and will hold the data. If the type is unknown apriori, the
user should get the SDS_obj as that information is there. This argument should be initialized to NULL.
The memory will be automatically allocated.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSGetGeo 1

Aps_SDSIsMap(3) aps API Reference Aps_SDSIsMap(3)

NAME
Aps_SDSIsMap − check if SDS looks like a map projection

SYNOPSIS
int Aps_SDSIsMap (SDS_obj sds);

ARGUMENTS
sds An SDS_obj returned from Aps_SDSOpen

DESCRIPTION
This routine checks the parameters in the SDS_obj returned from Aps_SDSOpen and performs a series of
checks to determine if the SDS looks like it contains APS Map Projection Parameters.

RETURNS
A 1 if SDS is an APS Map Projection SDS, 0 otherwise.

6 September 2004 Aps_SDSIsMap 1

Aps_SDSIterate(3) aps API Reference Aps_SDSIterate(3)

NAME
Aps_SDSIterate − iterate on each SDS in the file

SYNOPSIS
int Aps_SDSIterate (aps_t file_id , IterSDSFunc func, void *user_data);

ARGUMENTS
file_id ID returned by SDstart call

func function to call on each SDS

user_data additional data user might pass

DESCRIPTION
This function will call the user provided function for each SDS in the APS datafile. The iteration function
should return 1 (True) to continue to next SDS or 0 (False) when it wants to abort the looping.

RETURNS
If the iteration function returns 0 (to indicate stop looking), then, the index number of that SDS is returned.
Otherwise, the number of SDS examined is returned. APS_ERROR is returned if input parameters are
incorrect.

6 September 2004 Aps_SDSIterate 1

Aps_SDSOpen(3) aps API Reference Aps_SDSOpen(3)

NAME
Aps_SDSOpen − find and select an SDS by name/index

SYNOPSIS
int Aps_SDSOpen (aps_t file_id , char *sds_name_idx, SDS_obj *sdsPtr, int32 opt);

ARGUMENTS
file_id ID returned by SDstart call

sds_name_idx
name or index of SDS to open

sdsPtr pointer to SDS_obj structure

opt BY_NAME or BY_INDEX

DESCRIPTION
Aps_SDSOpen takes a SDS name/index and an SDS interface identifer (returned from SDstart), finds the
desired SDS, selects it, and extracts information about it. This information is returned in the SDS_obj
structure. This structure is dynamically allocated and the pointer to this structure should never be modified
(or you’ll get a memory leak). Use Aps_SDSClose to properly close down a SDS opened via this routine.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSOpen 1

Aps_SDSPrint(3) aps API Reference Aps_SDSPrint(3)

NAME
Aps_SDSPrint − print SDS information to file

SYNOPSIS
int Aps_SDSPrint (SDS_obj *sdsPtr, FILE * fp, int format);

ARGUMENTS
sdsPtr pointer to SDS_obj

fp standard C I/O file pointer

format APS_TEXT_TEXT or APS_TEXT_HTML

DESCRIPTION
Given a SDS_obj, Aps_SDSPrint writes an ASCII description of its structure.

RETURNS
APS_OK

6 September 2004 Aps_SDSPrint 1

Aps_SDSReadAll(3) aps API Reference Aps_SDSReadAll(3)

NAME
Aps_SDSReadAll − read a simple SDS from a file

SYNOPSIS
int Aps_SDSReadAll (SDS_obj *sds, void **data);

ARGUMENTS
sds pointer to SDS_obj structure

data data to be read from SDS

DESCRIPTION
Aps_SDSReadAll reads in an entire SDS, allocating as much memory as required to read the array in. The
SDS should be opened via Aps_SDSOpen which returns a structure in which one field contains the storage
space in bytes this array requires. The call may allocate this memory prior to the call of this function, or if
data is set to NULL, this routine will allocate the memory.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSReadAll 1

Aps_SDSReadAllGeo(3) aps API Reference Aps_SDSReadAllGeo(3)

NAME
Aps_SDSReadAllGeo − read a simple geophyiscal SDS from a file

SYNOPSIS
int Aps_SDSReadAllGeo (SDS_obj *sds, void **data);

ARGUMENTS
sds pointer to SDS_obj structure

data data to be read from SDS

DESCRIPTION
Aps_SDSReadAllGeo reads in an entire SDS, allocating as much memory as required to read the array in.
The SDS should be opened via Aps_SDSOpen which returns a structure in which one field contains the
storage space in bytes this array requires. The call may allocate this memory prior to the call of this func-
tion, or if data is set to NULL, this routine will allocate the memory.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSReadAllGeo 1

Aps_SDSReadAllGeof(3) aps API Reference Aps_SDSReadAllGeof(3)

NAME
Aps_SDSReadAllGeof − read a simple geophyiscal SDS from a file

SYNOPSIS
int Aps_SDSReadAllGeof (SDS_obj *sds, void **data);

ARGUMENTS
sds pointer to SDS_obj structure

data data to be read from SDS

DESCRIPTION
Aps_SDSReadAllGeof reads in an entire SDS, allocating as much memory as required to read the array in.
The SDS should be opened via Aps_SDSOpen which returns a structure in which one field contains the
storage space in bytes this array requires. The call may allocate this memory prior to the call of this func-
tion, or if data is set to NULL, this routine will allocate the memory.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSReadAllGeof 1

Aps_SDSWriteAll(3) aps API Reference Aps_SDSWriteAll(3)

NAME
Aps_SDSWriteAll − write a simple SDS to a file

SYNOPSIS
int Aps_SDSWriteAll (aps_t file_id , char *name, int32 nt, int32 rank, int32 *dims, char *software,
void *data, int32 nattrs, ATTR_obj *attrsPtr);

ARGUMENTS
file_id ID returned by SDstart

name Ascii name of SDS to create

nt HDF number type

rank number of dimensions

dims array of length of dimensions

software name of software (maybe NULL)

data data to write to SDS

nattrs number of attributes

attrsPtr pointer to attributes (maybe NULL, implies nattrs = 0)

DESCRIPTION
Aps_SDSWriteAll encapsulates all the required HDF routines to write a complete n-dimensional array of
data to an HDF file. The HDF file must be previously opened using the SDstart routine and this value is
passed to this routine as the first argument. This routine simply calls SDcreate, SDwritedata (using NULL
for stride) and SDendaccess. If the named SDS already exists, then the data will be written to it. This may
lead to an error, if the size of the data does not reflect the original SDS.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSWriteAll 1

Aps_SDSWriteAllGeo(3) aps API Reference Aps_SDSWriteAllGeo(3)

NAME
Aps_SDSWriteAllGeo − write an entire geophysical SDS to a file

SYNOPSIS
int Aps_SDSWriteAllGeo (SDS_obj *sds, double *data);

ARGUMENTS
sds pointer to SDS_obj structure

data data to be read from SDS

DESCRIPTION
Aps_SDSWriteAllGeo writes in an entire SDS to a file memory as required to read the array in. The SDS
should be opened via Aps_SDSOpen which returns a structure in which one field contains the storage space
in bytes this array requires. The call may allocate this memory prior to the call of this function, or if data is
set to NULL, this routine will allocate the memory.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_SDSWriteAllGeo 1

Aps_SPKGetBox(3) aps API Reference Aps_SPKGetBox(3)

NAME
Aps_SPKGetBox − retrieve image information from header

SYNOPSIS
void Aps_SPKGetBox (spk_hd hd , int *isp, int *iep, int *isl, int *iel, int *irp, int *irl);

ARGUMENTS
hd SeaPAK header structure

isp starting pixel of data in image

iep ending pixel of data in image

isl starting line of data in image

iel ending line of data in image

irp pixel replication

irl line replication

DESCRIPTION
Retrieve box information from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetBox 1

Aps_SPKGetCtl(3) aps API Reference Aps_SPKGetCtl(3)

NAME
Aps_SPKGetCtl − retrieve control point information from header

SYNOPSIS
void Aps_SPKGetCtl (spk_hd hd , char * file, int *ncpp, int *ncpl);

ARGUMENTS
hd SeaPAK header structure

file name of control file

ncpp number of control points across image

ncpl number of control points down image

DESCRIPTION
Retrieve control point information from SeaPAK header (&hd). The string to contain control filename
(file) must be at least 36 characters long.

6 September 2004 Aps_SPKGetCtl 1

Aps_SPKGetDataCalibration(3) aps API Reference Aps_SPKGetDataCalibration(3)

NAME
Aps_SPKGetDataCalibration − retrieve slope and intercept from header

SYNOPSIS
void Aps_SPKGetDataCalibration (spk_hd hd , int *type, double *slope, double *intp);

ARGUMENTS
hd SeaPAK header structure

type type of calibration

slope slope

intp intercept

DESCRIPTION
Retrieve data calibration information from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetDataCalibration 1

Aps_SPKGetDataSource(3) aps API Reference Aps_SPKGetDataSource(3)

NAME
Aps_SPKGetDataSource − retrieve data source from header

SYNOPSIS
void Aps_SPKGetDataSource (spk_hd hd , char *datsrc, char *dattyp, int *satID, int * format);

ARGUMENTS
hd SeaPAK header structure

datsrc 2-character data source

dattyp 2-character data type

satID satellite ID

format format

DESCRIPTION
Retrieve data source information from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetDataSource 1

Aps_SPKGetGeoCorners(3) aps API Reference Aps_SPKGetGeoCorners(3)

NAME
Aps_SPKGetGeoCorners − retrieve geographical corners of image

SYNOPSIS
void Aps_SPKGetGeoCorners (spk_hd hd , double *lats, double *lons);

ARGUMENTS
hd SeaPAK header structure

lats four corner latitudes

lons four corner longitudes

DESCRIPTION
Retrieve geographical corners of image from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetGeoCorners 1

Aps_SPKGetGeoExtremes(3) aps API Reference Aps_SPKGetGeoExtremes(3)

NAME
Aps_SPKGetGeoExtremes − retrieve geographical extremes of image

SYNOPSIS
void Aps_SPKGetGeoExtremes (spk_hd hd , double *latmin, double *latmax, double *lonmin, double
*lonmax);

ARGUMENTS
hd SeaPAK header structure

latmin minimum latitude

latmax maximum latitude

lonmin minimum longitude

lonmax maximum longitude

DESCRIPTION
Retrieve geographical extremes of image from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetGeoExtremes 1

Aps_SPKGetImage(3) aps API Reference Aps_SPKGetImage(3)

NAME
Aps_SPKGetImage − retrieve image information header

SYNOPSIS
void Aps_SPKGetImage (spk_hd hd , int *spix, int *epix, int *slin, int *elin);

ARGUMENTS
hd SeaPAK header structure

spix starting pixel of data in image

epix ending pixel of data in image

slin starting line of data in image

elin ending line of data in image

DESCRIPTION
Retrieve image coordinates information from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetImage 1

Aps_SPKGetInfo(3) aps API Reference Aps_SPKGetInfo(3)

NAME
Aps_SPKGetInfo − retrieve file information from header (spk_hd structure)

SYNOPSIS
void Aps_SPKGetInfo (spk_hd hd , int * pixels, int *lines, int *type);

ARGUMENTS
hd SeaPAK header structure

pixels number of pixels across image

lines number of lines across image

type data type of image

DESCRIPTION
Retrieve file information from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetInfo 1

Aps_SPKGetProjection(3) aps API Reference Aps_SPKGetProjection(3)

NAME
Aps_SPKGetProjection − retrieve projection information from header

SYNOPSIS
void Aps_SPKGetProjection (spk_hd hd , int *proj, int *zone, double *param);

ARGUMENTS
hd SeaPAK header structure

proj projection

zone UTM zone

param 15 projection parameters (USGS)

DESCRIPTION
Retrieve USGS projection information from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetProjection 1

Aps_SPKGetTime(3) aps API Reference Aps_SPKGetTime(3)

NAME
Aps_SPKGetTime − get time information

SYNOPSIS
void Aps_SPKGetTime (spk_hd hd , int *year, int *day, int *msec, double *incr);

ARGUMENTS
hd SeaPAK header structure

year year of image

day day of year of image

msec time of image in milliseconds of day

incr scan line increment

DESCRIPTION
Retrieve time information from SeaPAK header (&hd).

6 September 2004 Aps_SPKGetTime 1

Aps_SPKSetBox(3) aps API Reference Aps_SPKSetBox(3)

NAME
Aps_SPKSetBox − store area within input file which was subsectioned

SYNOPSIS
void Aps_SPKSetBox (spk_hd *hd , int isp, int iep, int isl, int iel, int irp, int irl);

ARGUMENTS
hd SeaPAK header structure

isp starting pixel of data in image

iep ending pixel of data in image

isl starting line of data in image

iel ending line of data in image

irp pixel replication

irl line replication

DESCRIPTION
Store box information into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetBox 1

Aps_SPKSetCtl(3) aps API Reference Aps_SPKSetCtl(3)

NAME
Aps_SPKSetCtl − store control point information into header

SYNOPSIS
void Aps_SPKSetCtl (spk_hd *hd , char * file, int ncpp, int ncpl);

ARGUMENTS
hd SeaPAK header structure

file name of control file

ncpp number of control points across image

ncpl number of control points down image

DESCRIPTION
Store control point information into SeaPAK header (&hd). The control point file name (file) can only
be a maximum of 35 characters.

6 September 2004 Aps_SPKSetCtl 1

Aps_SPKSetDataCalibration(3) aps API Reference Aps_SPKSetDataCalibration(3)

NAME
Aps_SPKSetDataCalibration − store slope and intercept to header

SYNOPSIS
void Aps_SPKSetDataCalibration (spk_hd *hd , int type, double slope, double intp);

ARGUMENTS
hd SeaPAK header structure

type type of calibration

slope slope

intp intercept

DESCRIPTION
Store data calibration information into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetDataCalibration 1

Aps_SPKSetDataSource(3) aps API Reference Aps_SPKSetDataSource(3)

NAME
Aps_SPKSetDataSource − store data source into the header

SYNOPSIS
void Aps_SPKSetDataSource (spk_hd *hd , char *datsrc, char *dattyp, int satID, int format);

ARGUMENTS
hd SeaPAK header structure

datsrc 2-character data source

dattyp 2-character data type

satID satellite ID

format format

DESCRIPTION
Store data source information into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetDataSource 1

Aps_SPKSetGeoCorners(3) aps API Reference Aps_SPKSetGeoCorners(3)

NAME
Aps_SPKSetGeoCorners − store geographical corners of image

SYNOPSIS
void Aps_SPKSetGeoCorners (spk_hd *hd , double *lats, double *lons);

ARGUMENTS
hd SeaPAK header structure

lats four corner latitudes

lons four corner longitudes

DESCRIPTION
Store geographical corners of image into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetGeoCorners 1

Aps_SPKSetGeoExtremes(3) aps API Reference Aps_SPKSetGeoExtremes(3)

NAME
Aps_SPKSetGeoExtremes − store geographical extremes of image

SYNOPSIS
void Aps_SPKSetGeoExtremes (spk_hd *hd , double latmin, double latmax, double lonmin, double lon-
max);

ARGUMENTS
hd SeaPAK header structure

latmin minimum latitude

latmax maximum latitude

lonmin minimum longitude

lonmax maximum longitude

DESCRIPTION
Store geographical extremes of image into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetGeoExtremes 1

Aps_SPKSetImage(3) aps API Reference Aps_SPKSetImage(3)

NAME
Aps_SPKSetImage − set area within image that contains data

SYNOPSIS
void Aps_SPKSetImage (spk_hd *hd , int spix, int epix, int slin, int elin);

ARGUMENTS
hd SeaPAK header structure

spix starting pixel of data in image

epix ending pixel of data in image

slin starting line of data in image

elin ending line of data in image

DESCRIPTION
Store image coordinates information into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetImage 1

Aps_SPKSetInfo(3) aps API Reference Aps_SPKSetInfo(3)

NAME
Aps_SPKSetInfo − store file information into header

SYNOPSIS
void Aps_SPKSetInfo (spk_hd *hd , int pixels, int lines, int type);

ARGUMENTS
hd SeaPAK header structure

pixels number of pixels across image

lines number of lines across image

type data type of image

DESCRIPTION
Store file information into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetInfo 1

Aps_SPKSetProjection(3) aps API Reference Aps_SPKSetProjection(3)

NAME
Aps_SPKSetProjection − store projection information into header

SYNOPSIS
void Aps_SPKSetProjection (spk_hd *hd , int proj, int zone, double *param);

ARGUMENTS
hd SeaPAK header structure

proj projection

zone UTM zone

param 15 projection parameters (USGS)

DESCRIPTION
Store USGS projection information into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetProjection 1

Aps_SPKSetTime(3) aps API Reference Aps_SPKSetTime(3)

NAME
Aps_SPKSetTime − store time information

SYNOPSIS
void Aps_SPKSetTime (spk_hd *hd , int year, int day, int msec, double incr);

ARGUMENTS
hd SeaPAK header structure

year year of image

day day of year of image

msec time of image in milliseconds of day

incr scan line increment

DESCRIPTION
Store time information into SeaPAK header (&hd).

6 September 2004 Aps_SPKSetTime 1

Aps_SetAgency(3) aps API Reference Aps_SetAgency(3)

NAME
Aps_SetAgency − sets the "createAgency" attribute

SYNOPSIS
int Aps_SetAgency (aps_t file_id);

ARGUMENTS
file_id SDS id to receive attribute

DESCRIPTION
Adds the "createAgency" attribute setting it as needed.

RETURNS
A APS_ERROR if fails, otherwise APS_OK

6 September 2004 Aps_SetAgency 1

Aps_SetArchivePath(3) aps API Reference Aps_SetArchivePath(3)

NAME
Aps_SetArchivePath − sets the processed version attribute

SYNOPSIS
int Aps_SetArchivePath (aps_t file_id , char *path);

ARGUMENTS
file_id SDS id to receive attribute

path path string

DESCRIPTION
Adds the "processedVersion" attribute setting it as needed.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_SetArchivePath 1

Aps_SetBrowsePath(3) aps API Reference Aps_SetBrowsePath(3)

NAME
Aps_SetBrowsePath − sets the browse path attribute

SYNOPSIS
int Aps_SetBrowsePath (aps_t file_id , char *path);

ARGUMENTS
file_id SDS id to receive attribute

path path string

DESCRIPTION
Adds the "browsePath" attribute setting it as needed.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_SetBrowsePath 1

Aps_SetEndTime(3) aps API Reference Aps_SetEndTime(3)

NAME
Aps_SetEndTime − set end time of APS file

SYNOPSIS
void Aps_SetEndTime (aps_t file_id , int year, int doy, int msec, char *str);

ARGUMENTS
file_id id of APS file

year year

doy day of year

msec millisecond time of day

str the time in string format

DESCRIPTION
This routine sets the end time from the given file.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_SetEndTime 1

Aps_SetFile(3) aps API Reference Aps_SetFile(3)

NAME
Aps_SetFile − sets file attributes

SYNOPSIS
void Aps_SetFile (aps_t file_id , char * file, int level);

ARGUMENTS
file_id file id

file file name

level lev el of data

DESCRIPTION
Write file attributes to file

6 September 2004 Aps_SetFile 1

Aps_SetInterlace(3) aps API Reference Aps_SetInterlace(3)

NAME
Aps_SetInterlace − set interlace parameter for SDS

SYNOPSIS
int Aps_SetInterlace (aps_t sds_id , int interlace);

ARGUMENTS
sds_id SDS id to get color table number from

interlace interlace

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_SetInterlace 1

Aps_SetMapProjection(3) aps API Reference Aps_SetMapProjection(3)

NAME
Aps_SetMapProjection − sets map projection attributes

SYNOPSIS
void Aps_SetMapProjection (aps_t file_id , char *mapName, double *upperLeft, double *upperRight,
double *lowerRight, double *lowerLeft);

ARGUMENTS
file_id file id

mapName name of map projection

upperLeft upper left

upperRight upper right

lowerRight lower right

lowerLeft lower left

DESCRIPTION
Write file attributes to file

6 September 2004 Aps_SetMapProjection 1

Aps_SetMask(3) aps API Reference Aps_SetMask(3)

NAME
Aps_SetMask − sets the input masks

SYNOPSIS
int Aps_SetMask (aps_t file_id , char *names, flag_t mask);

ARGUMENTS
file_id SDS id to receive attribute

names name of other units

mask intercpt

DESCRIPTION
Adds the "fileStatus" attribute setting it as needed.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_SetMask 1

Aps_SetNote(3) aps API Reference Aps_SetNote(3)

NAME
Aps_SetNote − set note parameter for SDS

SYNOPSIS
int Aps_SetNote (aps_t sds_id , char *note);

ARGUMENTS
sds_id SDS id to get color table number from

note note

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_SetNote 1

Aps_SetProduct(3) aps API Reference Aps_SetProduct(3)

NAME
Aps_SetProduct − adds product attributes to SDS

SYNOPSIS
int Aps_SetProduct (int32 sds_id , char *product, char *algorithm, char *units, char *status);

ARGUMENTS
sds_id ID of SDS

product name of product in SDS

algorithm algorithms used to create SDS

units units of data in SDS

status status of data in SDS

DESCRIPTION
This function creates three (productName, productAlgorithm, and productUnits) attributes which generally
describe the product in an SDS. For each, a NULL pointer maybe inserted in its place to indicate that that
attribute should not be written.

RETURNS
APS_OK

6 September 2004 Aps_SetProduct 1

Aps_SetRanges(3) aps API Reference Aps_SetRanges(3)

NAME
Aps_SetRanges − adds product range attributes to SDS

SYNOPSIS
int Aps_SetRanges (int32 sds_id , double *validRange, double *dataRange, double *actualRange);

ARGUMENTS
sds_id ID of SDS

validRange expected min/max of data

dataRange min/max of data within validRange

actualRange min/max of data not within validRange

DESCRIPTION
This function creates three (productValidRanges, productDataRanges, and productActualRanges) attributes
which generally describe the the metrics of the geophysical data in the SDS.

RETURNS
APS_OK

6 September 2004 Aps_SetRanges 1

Aps_SetScaling(3) aps API Reference Aps_SetScaling(3)

NAME
Aps_SetScaling − adds product scaling attributes to SDS

SYNOPSIS
int Aps_SetScaling (int32 sds_id , int type, double slope, double intp);

ARGUMENTS
sds_id ID of SDS

type type of product

slope slope of equation for product

intp intercept of equation for product

DESCRIPTION
This function creates three (productScaling, scalingSlope, and scalingIntercept) attributes which generally
describe the conversion from integer values to geophysical values for an SDS.

RETURNS
APS_OK

6 September 2004 Aps_SetScaling 1

Aps_SetSoftware(3) aps API Reference Aps_SetSoftware(3)

NAME
Aps_SetSoftware − set software parameter for SDS

SYNOPSIS
int Aps_SetSoftware (aps_t sds_id , char *software);

ARGUMENTS
sds_id SDS id to get color table number from

software software

DESCRIPTION
This routine will search the attributes associated with the SDS to determine if a browse colortable was
saved with the array.

RETURNS
0 if not found.
1 if found

6 September 2004 Aps_SetSoftware 1

Aps_SetStartTime(3) aps API Reference Aps_SetStartTime(3)

NAME
Aps_SetStartTime − set start time of APS file

SYNOPSIS
void Aps_SetStartTime (aps_t file_id , int year, int doy, int msec, char *str);

ARGUMENTS
file_id id of APS file

year year

doy day of year

msec millisecond time of day

str the time in string format

DESCRIPTION
This routine extracts the start time from the given file.

RETURNS
A 1 if range is found, 0 otherwise.

6 September 2004 Aps_SetStartTime 1

Aps_ShortSwap(3) aps API Reference Aps_ShortSwap(3)

NAME
Aps_ShortSwap − swap an Short

SYNOPSIS
int Aps_ShortSwap (short *a);

ARGUMENTS
a short pointer

DESCRIPTION
This routine will swap an int type. It will handle int’s which are 2, 4, or 8 bytes long. It does a simple byte
order reversal. It does not handle non-sequential byte orderings like a PDP-11.

RETURNS
The swapped short value.

6 September 2004 Aps_ShortSwap 1

Aps_SunAngle(3) aps API Reference Aps_SunAngle(3)

NAME
Aps_SunAngle − computes solar azimuth, elevation, and zenith angles

SYNOPSIS
void Aps_SunAngle (int year, int doy, double secs, double lat, double lon, double *az, double *el,
double *za, int inunit, int ouunit);

ARGUMENTS
year year (e.g., 1980)

doy day of year (e.g., 71)

secs seconds since start of day (GMT)

lat earth latitude

lon earth longitude

az solar azimuth angle (clockwise from N)

el solar elevation angle

za solar zenith angle

inunit units of input Earth points

ouunit units of resulting solar angles

DESCRIPTION
Given the four digit year, day of year, seconds of the day given in GMT, and the lattitude and longitude of a
point on the Earth, Aps_SunAngle will return the solar azimuth angle measured clockwise (to the East), the
solar elevation and the solar zenith angles. The user can select the angles units to be degrees (ouunit =
LL_DEGREES), or radians (ouunit = LL_RADIANS). The user should define inunit similarly for the
Earth points.

AUTHOR
John Blaisdel, GSC, 2/89, original Fotran version Paul Martinolich, NSI, 6/98, C version

6 September 2004 Aps_SunAngle 1

Aps_ValidateFile(3) aps API Reference Aps_ValidateFile(3)

NAME
Aps_ValidateFile − validate that HDF file is an APS file

SYNOPSIS
int Aps_ValidateFile (char * file, FILE * fp);

ARGUMENTS
file file to read

fp where to write messages (NULL for none)

DESCRIPTION
Examines the structure of the input file to verify that its structure follows that required by the APS File
Specification.

6 September 2004 Aps_ValidateFile 1

Aps_WriteData(3) aps API Reference Aps_WriteData(3)

NAME
Aps_WriteData − write geophysical data to SDS

SYNOPSIS
int Aps_WriteData (SDS_obj sds, int32 *start, int32 *stride, int32 *edge, void *buf);

ARGUMENTS
sds pointer to SDS_obj structure

start array of start index for each dimension

stride array of stride’s for each dimension maybe NULL for no subsampling

edge array of edge indices for each dimension

buf output buffer (MODIFIED by function)

DESCRIPTION
This API covers the HDF routine SDwritedata.

NOTE
The array pointed to be ’buf ’ is modified by this routine.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_WriteData 1

Aps_WriteGeoData(3) aps API Reference Aps_WriteGeoData(3)

NAME
Aps_WriteGeoData − write geophysical data to SDS

SYNOPSIS
int Aps_WriteGeoData (double *buf , int32 *start, int32 *stride, int32 *edge, SDS_obj sds);

ARGUMENTS
buf output buffer (MODIFIED by function)

start array of start index for each dimension

stride array of stride’s for each dimension maybe NULL for no subsampling

edge array of edge indices for each dimension

sds pointer to SDS_obj structure

DESCRIPTION
This API emulates the HDF routine SDwritedata. This routine, however, will call Aps_GetDataCalibration
and automatically convert the data from geophsical values to counts. This conversion is done in place.
Therefore all data in buf will have been modified.

NOTE
The array pointed to be ’buf ’ is modified by this routine.

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_WriteGeoData 1

Aps_WriteGrid(3) aps API Reference Aps_WriteGrid(3)

NAME
Aps_WriteGrid − write control point grid to file

SYNOPSIS
int Aps_WriteGrid (GCP_Grid ctl, GCP_Grid_Write octl);

ARGUMENTS
ctl a GCP grid structure

octl format to write grid

DESCRIPTION
Writes a GCP_Grid structure to an output file. The user can select an ASCII format using
APS_GRID_TEXT as the format specifier, or an HDF format using APS_GRID_HDF as the format speci-
fier.

If the APS_GRID_HDF format is selected, the following SDSs are

ADDED TO THE OUTPUT FILE
"gridLines", "grid_Pixels", "grid_Latitudes", "gridLongitudes"

RETURNS
APS_OK, if successful; APS_ERROR, otherwise

6 September 2004 Aps_WriteGrid 1

Aps_WriteNSIPSData(3) aps API Reference Aps_WriteNSIPSData(3)

NAME
Aps_WriteNSIPSData − write data to an NSIPS file

SYNOPSIS
size_t Aps_WriteNSIPSData (void *buf , size_t nitems, nsips_hd hd , apsNSIPSFile * fp);

ARGUMENTS
buf input buffer

nitems number of items to read

hd NSIPS header structure

fp NSIPS file pointer

DESCRIPTION
This function will write nitems from an NSIPS file. It will automatically correct for endianess and data size
as defined in the NSIPS header structure. The user must set these.

RETURNS
The number of items written.

6 September 2004 Aps_WriteNSIPSData 1

Aps_WriteNSIPSHeader(3) aps API Reference Aps_WriteNSIPSHeader(3)

NAME
Aps_WriteNSIPSHeader − write NSIPS header to file

SYNOPSIS
int Aps_WriteNSIPSHeader (const char * filename, apsNSIPSFile * fp, nsips_hd hd , int data);

ARGUMENTS
filename name of output file or NULL if using fp

fp file pointer of output file or NULL

hd NSIPS header to write to file

data APS_BIG_ENDIAN or APS_LITTLE_ENDIAN

DESCRIPTION
Aps_WriteNSIPSHeader will write an NSIPS header structure to a file. The file can be specified either by
filename or a file pointer.

If the filename is non-NULL, it is used. The file will be opened for binary write access and closed when
the function returns.

If the filename is NULL, then the file pointer is used. In this case, the file pointer to moved to the start of
the file, the header encoded and written to the file and the file pointer returned to its original location. Thus,
this function tries to be none destructive on an passed file pointer.

The caller must specify the endianess of the output file.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_WriteNSIPSHeader 1

Aps_WriteSPKData(3) aps API Reference Aps_WriteSPKData(3)

NAME
Aps_WriteSPKData − write data to a SPK file

SYNOPSIS
size_t Aps_WriteSPKData (void *buf , size_t nitems, spk_hd hd , apsSPKFile * fp);

ARGUMENTS
buf pointer to output buffer stream

nitems number of items to write

hd SPK header structure

fp output SPK file pointer

DESCRIPTION
This function will write nitems to a SPK file. It will automatically correct for endianess and data size as
defined in the PC-SEAPAK header structure. The user must set these

RETURNS
The number of items written.

6 September 2004 Aps_WriteSPKData 1

Aps_WriteSPKGeoData(3) aps API Reference Aps_WriteSPKGeoData(3)

NAME
Aps_WriteSPKGeoData − write geophysical data to a SPK file

SYNOPSIS
size_t Aps_WriteSPKGeoData (double *buf , size_t nitems, spk_hd hd , apsSPKFile * fp);

ARGUMENTS
buf pointer to buffer of doubles

nitems number of items to write

hd SPK header structure

fp output SPK file pointer

DESCRIPTION
This routine writes n items of data to the SEAPAK file and automatically converts the data from geophysi-
cal values which to format specified by output header.

RETURNS
The number of items written.

6 September 2004 Aps_WriteSPKGeoData 1

Aps_WriteSPKHeader(3) aps API Reference Aps_WriteSPKHeader(3)

NAME
Aps_WriteSPKHeader − write header from SPK file

SYNOPSIS
int Aps_WriteSPKHeader (char * filename, apsSPKFile * fp, spk_hd hd , int data);

ARGUMENTS
filename output filename or NULL

fp output SPK file pointer

hd SPK header structure to be written

data APS_BIG_ENDIAN or APS_LITTLE_ENDIAN

DESCRIPTION
Aps_WriteSPKHeader will return an SPK header structure which has been write from a file. The file can
be specified either by filename or a file pointer.

If the filename is non-NULL, it is used. The file will be opened for binary write access and closed when
the function returns. The file can be write, if it was compressed, provided that option was compiled in.

If the filename is NULL, then the file pointer is used. In this case, the file pointer to moved to the start of
the file, the header write and decoded and the file pointer returned. Thus, this function tries to be none
destructive on an passed file pointer.

RETURNS
APS_OK if successful; otherwise, returns APS_ERROR.

6 September 2004 Aps_WriteSPKHeader 1

